Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The subject of the work is a five-layered composite beam with clamped ends subjected to a uniformly distributed load along its length. Two analytical models of this beam are developed with consideration of the shear effect. The first model is formulated on the basis of the classical zig-zag theory. Whereas, the second model is developed using an individual nonlinear shear deformation theory with consideration of the classical shear stress formula (called Zhuravsky shear stress). The system of two differential equations of equilibrium for each beam model is obtained based on the principle of stationary total potential energy. These systems of equations are exactly analytically solved. The shear effect function and the maximum deflection are determined for each of these two beam models. Detailed calculations are carried out for exemplary beams of selected dimensionless sizes and material constants. The main goal of the research is to develop two analytical models of this beam, determine the shear effect function, the shear coefficient, and the maximum deflection in the elastic range for each model, as well as to perform a comparative analysis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--46
Opis fizyczny
Bibliogr. 22 poz., tab., il.
Twórcy
autor
- Łukasiewicz Research Network, Poznan Institute of Technology, Poznan, Poland
Bibliografia
- [1] E. Carrera. Historical review of Zig-Zag theories for multilayered plates and shells. Applied Mechanics Reviews, 56(3):287–308, 2003. doi: 10.1115/1.1557614.
- [2] S.-J. Huang. An analytical method for calculating the stress and strain in adhesive layers in sandwich beams. Composite Structures, 60(1):105–114, 2003.
- [3] A. Pollien, Y. Condea, L. Pambaguian, and A. Mortensen. Graded open-cell aluminium foam core sandwich beams. Materials Science and Engineering: A, 404:9–18, 2005. doi: 10.1016/j.msea.2005.05.096.
- [4] H. Hu, S. Belouettar, M. Potier-Ferry, and E.M. Daya. Review and assessment of various theories for modeling sandwich composites. Composite Structures, 84(3):282–292, 2008. doi: 10.1016/j.compstruct.2007.08.007.
- [5] J.N. Reddy. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 48(11):1507–1518, 2010. doi: 10.1016/j.ijengsci.2010.09.020.
- [6] A. Chakrabarti, H.D. Chalak, M.A. Iqbal, and A.H. Sheikh. A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core. CompositeStructures, 93(2):271–279, 2011. doi: 10.1016/j.compstruct.2010.08.031.
- [7] E. Carrera, M. Filippi, and E. Zappino. Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. European Journal of Mechanics A/Solids, 41:58–69, 2013. doi: 10.1016/j.euromechsol.2013.02.006.
- [8] K. Magnucki, M. Smyczyński, and P. Jasion. Deflection and strength of a sandwich beam with thin binding layers between faces and a core. Archives of Mechanics, 65(4):301–311, 2013.
- [9] M.J. Smyczyński, and E. Magnucka-Blandzi. Static and dynamic stability of an axi-ally compressed five-layer sandwich beam. Thin-Walled Structures, 90:23–30, 2015. doi: 10.1016/j.tws.2015.01.005.
- [10] P. Paczos, P. Wasilewicz, and E. Magnucka-Blandzi. Experimental and numerical investigations of five-layered trapezoidal beams. Composite Structures, 145:129–141, 2016. doi: 10.1016/j.compstruct.2016.02.079.
- [11] U. Icardi, and F. Sola. Assessment of recent zig-zag theories for laminated and sandwich structures. Composites Part B, 97:26–52, 2016. doi: 10.1016/j.compositesb.2016.04.058.
- [12] E. Magnucka-Blandzi, Z. Walczak, P. Jasion, and L. Wittenbeck. Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores – the lengthwise corrugated main core. Thin-Walled Structures, 112:78–82, 2017. doi: 10.1016/j.tws.2016.12.013.
- [13] T.P. Vo, H.-T. Thai, T.-K. Nguyen, D. Lanc, and A. Karamanli. Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. Composite Structures, 176:388–397, 2017. doi: 10.1016/j.compstruct.2017.05.041.
- [14] M.J. Smyczyński, and E. Magnucka-Blandzi. The three-point bending of a sandwich beam with two binding layers – Comparison of two nonlinear hypotheses. Composite Structures, 183:96–102, 2018. doi: 10.1016/j.compstruct.2017.01.065.
- [15] Y. Zhai, Y. Li, and S. Liang. Free vibration analysis of five-layered composite sandwich plates with two-layered viscoelastic cores. Composite Structures, 200:346–357, 2018. doi: 10.1016/j.compstruct.2018.05.082.
- [16] Y.L. Pei, P.S. Geng, and L.X. Li. A modified higher-order theory for FG beams. European Journal of Mechanics A/Solids, 72:186–197, 2018. doi: 10.1016/j.euromechsol.2018.05.008.
- [17] Y.Q. Wang, C. Liang, J.W. Zu. Examining wave propagation characteristics in metal foam beams: Euler-Bernoulli and Timoshenko models. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(12):565, 2018. doi: 10.1007/s40430-018-1491-z.
- [18] J. Wang, T.P. Morris, R. Bihamta, and Y.-C. Pan. Numerical and experimental verification of impact response of laminated composite structure. Archive of Mechanical Engineering, 67(2):127–147, 2020. doi: 10.24425/ame.2020.131687.
- [19] A. Garg, and H.D. Chalak. Novel higher-order zigzag theory for analysis of laminated sandwich beams. Journal of Materials: Design and Applications, 235(1):176–194, 2021. doi: 10.1177/1464420720957045.
- [20] K. Magnucki, E. Magnucka-Blandzi, and L. Wittenbeck. Three models of a sandwich beam: Bending, buckling and free vibration. Engineering Transactions, 70(2):97–122, 2022. doi: 10.24423/EngTrans.1416.20220331.
- [21] K. Magnucki. An individual shear deformation theory of beams with consideration of the Zhuravsky shear stress formula. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, Zingoni (ed.) pages 682–689, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2022, doi: 10.1201/9781003348443-112.
- [22] K. Magnucki, and E. Magnucka-Blandzi. A refined shear deformation theory of an asymmetric sandwich beam with porous core: linear bending problem. Applied Mathematical Modelling, 124:624–638, 2023. doi: 10.1016/j.apm.2023.08.025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2a72fb1-26ac-4a5d-a224-503dde96bc9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.