Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Plant diseases are a foremost risk to the safety of food. They have the potential to significantly reduce agricultural products quality and quantity. In agriculture sectors, it is the most prominent challenge to recognize plant diseases. In computer vision, the Convolutional Neural Network (CNN) produces good results when solving image classification tasks. For plant disease diagnosis, many deep learning architectures have been applied. This paper introduces a transfer learning based model for detecting tomato leaf diseases. This study proposes a model of DenseNet201 as a transfer learning-based model and CNN classifier. A comparison study between four deep learning models (VGG16, Inception V3, ResNet152V2 and DenseNet201) done in order to determine the best accuracy in using transfer learning in plant disease detection. The used images dataset contains 22930 photos of tomato leaves in 10 different classes, 9 disorders and one healthy class. In our experimental, the results shows that the proposed model achieves the highest training accuracy of 99.84% and validation accuracy of 99.30%.
Czasopismo
Rocznik
Tom
Strony
56--70
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
autor
- Climate Change Information Center and Expert Systems, Agricultural Research Center, Egypt
autor
- Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt
autor
- Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt
autor
- Climate Change Information Center and Expert Systems, Agricultural Research Center, Egypt
Bibliografia
- [1] Afifi, A., Alhumam, A., & Abdelwahab, A. (2021). Convolutional Neural Network for Automatic Identification of Plant Diseases with Limited Data. Plants, 10(1), 28. https://doi.org/10.3390/plants10010028
- [2] Agarwal, M., Singh, A., Arjaria, S., Sinha, A., & Gupta, S. (2020). ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network. Procedia Computer Science, 167, 293–301. https://doi.org/10.1016/j.procs.2020.03.225
- [3] Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. (2020). Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture, 173, 105393. https://doi.org/10.1016/j.compag.2020.105393
- [4] Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt.
- [5] Hong, H., Lin, J., & Huang, F. (2020). Tomato Disease Detection and Classification by Deep Learning. In 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) (pp. 25–29). IEEE. https://doi.org/10.1109/ICBAIE49996.2020.00012
- [6] Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely Connected Convolutional Networks. CoRR, abs/1608.06993. http://arxiv.org/abs/1608.06993
- [7] Ji, M., Zhang, L., & Wu, Q. (2020). Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Information Processing in Agriculture, 7(3), 418–426. https://doi.org/10.1016/j.inpa.2019.10.003
- [8] Jupyter.org. (2021). https://jupyter.org
- [9] Kabir, M. M., Ohi, A. Q., & Mridha, M. F. (2020). A Multi-Plant Disease Diagnosis Method using Convolutional Neural Network. CoRR, abs/2011.05151. https://arxiv.org/abs/2011.05151
- [10] Kaggle. (2018). https://www.kaggle.com/noulam/tomato/download
- [11] Kumar, V., Arora, H., Harsh, & Sisodia, J. (2020). ResNet-based approach for Detection and Classification of Plant Leaf Diseases. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 495–502). IEEE. https://doi.org/10.1109/ICESC48915.2020.9155585
- [12] Mohamed, A., Abdel-Gaber, S., Nasr, M., & Hazman, M. (2020). An Intelligent Approach to Mitigate Effects of Climate Change and Insects on Crops. International Journal of Computer Science and Information Security (IJCSIS), 18(3), 75–79.
- [13] Peyal, H. I., Shahriar, S. M., Sultana, A., Jahan, I., & Mondol, Md. H. (2021). Detection of Tomato Leaf Diseases Using Transfer Learning Architectures: A Comparative Analysis. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1–6). IEEE. https://doi.org/10.1109/ACMI53878.2021.9528199
- [14] Plant health and food security. (2017). FAO. http://www.fao.org/3/a-i7829e.pdf
- [15] Rangarajan, A. K., Purushothaman, R., & Ramesh, A. (2018). Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Computer Science, 133, 1040–1047. https://doi.org/10.1016/j.procs.2018.07.070
- [16] Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant Disease Detection and Classification by Deep Learning. Plants, 8(11), 468. https://doi.org/10.3390/plants8110468
- [17] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
- [18] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. In Y. Bengio & Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1409.1556
- [19] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2818–2826). IEEE. https://doi.org/10.1109/CVPR.2016.308
- [20] Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161, 272–279. https://doi.org/10.1016/j.compag.2018.03.032
- [21] Venkatesh, Nagaraju, Y., Sahana, T. S., Swetha, S., & Hegde, S. U. (2020). Transfer Learning based Convolutional Neural Network Model for Classification of Mango Leaves Infected by Anthracnose. In 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1–7). IEEE. https://doi.org/10.1109/INOCON50539.2020.9298269
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2a4b9da-9191-420e-9b71-a0dfc44db611