Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Topological Derivative has been recognized as a powerful tool in obtaining the optimal topology for several kinds of engineering problems. This derivative provides the sensitivity of the cost functional for a boundary value problem for nucleation of a small hole or a small inclusion at a given point of the domain of integration. In this paper, we present a topological asymptotic analysis with respect to the size of singular domain perturbation for a coupled nonlinear PDEs system with an obstacle on the boundary. The domain decomposition method, referring to the SteklovPoincar´epseudo-differential operator, is employed for the asymptotic study of boundary value problem with respect to the size of singular domain perturbation. The method is based on the observation that the known expansion of the energy functional in the ring coincides with the expansion of the Steklov-Poincar´e operator on the boundary of the truncated domain with respekt to the small parameter, which measures the size of perturbation. In this way, the singular perturbation of the domain is reduced to the regular perturbation of the Steklov-Poincar´e map ping for the ring. The topological derivative for a tracking type shape functional is evaluated so as to obtain the useful formula for application in the numerical methods of shape and topology optimization.
Czasopismo
Rocznik
Tom
Strony
5--25
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Universit´e d’Oran 1, Ahmed BenBella, Laboratoire de Math´ematique et ses applications BP 1524, El M’naouer, Oran, Alg´erie
- Universit´e Hassiba Benbouali, D´epartement de Math´ematiques, Chlef, Alg´erie
autor
- Universit´e d’Oran 1, Ahmed BenBella, Laboratoire de Math´ematique et ses applications BP 1524, El M’naouer, Oran, Alg´erie
autor
- Universit´e de Lorraine-Nancy, Institut Elie Cartan, Laboratoire de Math´ematiques, B.P. 239, 54506, Vandoeuvre l`es Nancy cedex, France
- Systems Research Institute of the Polish Academy of Sciences, 01-447 Warszawa, ul. Newelska 6, Poland
Bibliografia
- [1] Abramowitz, M. and Stegun, I. A. (1964) Handbook of Mathematical Function with Formulas, Graphes and Mathematical Tables. Applied Mathematics Series 55.
- [2] Amstutz, S. (2006) Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl, 85, 540–557.
- [3] Amstutz, S. (2005) The topological asymptotic for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 11(3) 401–425.
- [4] Argatov, I. (2009) Asymptotic models for the topological sensitivity of the energy functional. Applied Mathematics Letters 22 19–23.
- [5] Bucur, D. and Buttazzo, G. (2005) Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications. Birkh¨auser, Boston.
- [6] Delfour, M.C. and Zolesio, J.-P. (2001) Shapes and Geometries, Advanes in Design and Control. SIAM. Philadelphia.
- [7] Feij´oo, R. A., Novotny, A.A., Taroco, E., and Padra, C. (2003) The topological derivative for the Poisson’s problem. Math. Models Methods Appl. Sci. 13(2) 1825–1844.
- [8] Haraux, A. (1977) How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan, 29, 615-631.
- [9] Iguernane, M., Nazarov, S. A., Roche, J.R., Sokolowski, J. and Szulc, K. (2009) Topological derivatives for semilineair elliptic equations, J. Appl. Math. and Compt. Science 19, 2, 191–205.
- [10] Jleli, M., Samet, B. and Vial, G. (2015) Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole. J. Math. Pures Appl 103, 557–574.
- [11] Laurain, A. (2006) Domaines singuli`erement perturb´es en optimisation de formes. Th`ese, Universit´e de Henri Poincar´e - Nancy.
- [12] Masmoudi, M. (2001) The Topological Asymptotic, Computational Methods for Control Applications. In: R. Glowinski, H. Kawarada and J. Periaux, eds., GAKUTO Internat. Ser. Math. Sci. Appl. 16, 53–72. Mignot, F. (1976) Contrˆole dans les in´equations variationnelles elliptiques. J. Functional Analysis, 22, 130–185.
- [13] Nazarov, S.A., Sokolowski, J. (2003) Asymptotic analysis of shape functionals. J. Math. Pures Appl., 82, 125–196.
- [14] Novotny, A.A., Sokolowski, J. (2013) Topological Derivatives in the Shape Optimization, Series: Interaction of Mechanics and Mathematics, SpringerVerlag.
- [15] Rao, M., Soko lowski, J. (2000) Tangent sets in Banach spaces and applications to variational inequalities. Les pr´epublications de l’Institut ´Elie Cartan 42/2000.
- [16] Sokolowski, J., Zolesio, J.-P. (1992) Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag, Berlin, New York.
- [17] Sokolowski,J., Zochowski, A. (1999) On the topological derivative in shape optimization. SIAM J. Control Optim., 37, 1241–1272.
- [18] Sokolowski,J., Zochowski, A. (2001) Topological derivatives of shape functionals for elasticity systems. Mechanics of Structures and Machines 29(3), 333–351.
- [19] Sokolowski, J., Zochowski, A. (2005) Modeling of topological derivatives for contact problems. Numer. Math., 102, 145–179.
- [20] Sokolowski,J., Zochowski, A. (2013) Shape and topology optimization of distributed parameter systems. Control and Cybernetics 42(1), 217–226.
- [21] Watson, G. N. (1922) A Treatise on the Theory of Bessel Function. Cambridge University Press. Whittaker, E.T. and Watson, G. N. (1963) A Course of Modern Analysis, 4th ed. Cambridge University Press.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f29c5f6e-7cc2-4281-98b3-3247f78e7439