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Abstract: The Topological Derivative has been recognized as
a powerful tool in obtaining the optimal topology for several kinds
of engineering problems. This derivative provides the sensitivity of
the cost functional for a boundary value problem for nucleation of
a small hole or a small inclusion at a given point of the domain
of integration. In this paper, we present a topological asymptotic
analysis with respect to the size of singular domain perturbation for
a coupled nonlinear PDEs system with an obstacle on the bound-
ary. The domain decomposition method, referring to the Steklov-
Poincaré pseudo-differential operator, is employed for the asymptotic
study of boundary value problem with respect to the size of singular
domain perturbation. The method is based on the observation that
the known expansion of the energy functional in the ring coincides
with the expansion of the Steklov-Poincaré operator on the bound-
ary of the truncated domain with respect to the small parameter,
which measures the size of perturbation. In this way, the singular
perturbation of the domain is reduced to the regular perturbation of
the Steklov-Poincaré mapping for the ring. The topological deriva-
tive for a tracking type shape functional is evaluated so as to obtain
the useful formula for application in the numerical methods of shape
and topology optimization.
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1. Introduction

The topological sensitivity analysis is a powerful framework of numerical meth-
ods for obtaining the optimal topology for several engineering problems. The
aim of the topological sensitivity analysis is to determine an asymptotic expan-
sion of a shape functional with respect to the variation of the topology of the
domain. The notion of topological derivative of a shape functional was intro-
duced in Sokolowski and Zochowski (1999, 2001). Namely, let us consider a
cost function J (Ω) := JΩ(uΩ), where uΩ is the solution of a partial differential
equation, defined in the domain Ω ⊂ R

d, d = 2 or 3. Denote by Bε (x0) a ball
of the centre at x0 ∈ Ω with small radius ε > 0.

The topological asymptotic expansion is an expression of the form

J (Ωε) = J (Ω) + f (ε) T (x0) + o(f(ε))

where Ωε := Ω\Bε (x0) is singular geometrical perturbation of Ω including the

small hole, f (ε) is a positive function tending to zero with ε such that
o(f(ε))

f (ε)
→

0 as ε→ 0.
Therefore, to minimize the criterion, we are interested in removing the mat-

ter where the topological derivative of the cost T , called also in the literature
the topological gradient, is negative. Hence the topological derivative measures
the sensitivity of the cost for the problem under consideration for nucleation of
a small hole at each point of the domain.

A general framework, enabling to calculate the topological asymptotics for
a large class of shape functionals, has been worked out in several studies, see,
for example, Feijóo et al. (2003), Jleli, Samet and Vial (2015), Nazarov and
Sokolowski (2003), Novotny and Sokolowski (2013), Masmoudi (2001), Iguer-
nane et al. (2009), Laurain (2006), or Sokolowski and Zochowski (2005), for
linear or semilinear problems with arbitrary functionals and variational inequal-
ities with the energy functional. For linear problems, those studies are based on
an adaptation of the adjoint state method and a domain truncation technique
providing an equivalent formulation of the PDE in the fixed functional space.

In our study, the problem under consideration is a coupled system of an ellip-
tic equation with an obstacle on the boundary and a modified Helmholtz equa-
tion. The decomposition method and asymptotic analysis are used in derivation
of the topological derivatives. This technique has been used widely giving rise to
various interesting results (see, for example, Novotny and Sokolowski, 2013, or
Feijóo et al., 2003). In our case, the topological sensitivity is performed for the
Helmholtz equation, which is defined in the domain given by the support of a
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characteristic function χ. The Helmholtz equation is coupled with a variational
inequality defined in the complement of Supp(χ).

The variational formulation of the coupled system in the singularly per-
turbed domain Ωε is given by an equivalent problem in form of the variational
inequality in the appropriate Sobolev space on Ωε. It turns out that for the
purposes of asymptotic analysis a regular pertubed variational inequality in the
fixed domain Ω can be considered following Sokolowski and Zochowski (2005).
Such a variational inequality is obtained by replacing the exact energy of the
given system by its appropriate asymptotic approximation, obtained from the
asymptotic analysis of Steklov-Poincaré operator in the ring (see Sokolowski
and Zochowski, 2005). In such a way, the singularly perturbed geometrical do-
main can be replaced by a regular perturbation of bilinear form. It turns out
that such a replacement does not change the first order asymptotic expansion
for the energy functional associated with the coupled boundary value problem.
For the modified energy functional, we can apply the abstract theorem (from
Sokolowski and Zolesio, 1992) on the conical differentiability of the solution to
the regularly perturbed variational inequality. The conical derivative of the so-
lution is given by a unique solution of an auxiliary variational inequality over
the convex subset of the energy space. In this way, we obtain an asymptotic
expansion of the solution with respect to ε and we get the same approximation
for the original variational inequality but far from the singularity. Finally, we
use this result to derive the formula of the topological derivative of a tracking
type shape functional. Such formula is useful in numerical methods for shape
optimization.

The paper is organized as follows. In Section 2, the model problem con-
sidered is given. The different steps followed in the asymptotic analysis are
described in Section 3. The asymptotic expansion of the Steklov-Poincaré is
studied in Section 4. The conical derivatives of solutions in perturbed and fixed
domains are presented and the main result on the topological asymptotic anal-
ysis of the problem under consideration is given in Section 5.

2. Problem formulation

Let Ω be an open and bounded domain in R
2 with a smooth boundary ∂Ω :=

Γ0 ∪ Γs such that Γ0 ∩ Γs = ∅. The system under consideration is a coupled
system defined by an Helmholtz equation in Ωu := Supp (χ), the support of a
characteristic function χ with Ωu ⊂ Ω and a variational inequality in Ωw the
outer domain of Supp (χ) ; in Ω, with transmission conditions on the interface
Σ and Signorini conditions on the boundary Γs which is assumed to be C2.

The strong form of boundary value problem is formulated as follows: Find
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a function z := (u,w) : Ω → R
2 such that































−∆u+ u = 0 in Ωu

u = w on Σ
∂nu = ∂nw on Σ
−∆w = f Ωw

w = 0 on Γ0

w ≥ 0, ∂nw ≥ 0, w∂nw = 0 on Γs

(2.1)

where f ∈ L2 (Ωw) , n is the unit outward normal vector to ∂Ω and ∂n stands
for the derivative along the outward normal.

The coupled problem (2.1) admits a unique weak solution z := z(Ω) in
K(Ω) ⊂ H1 (Ω) characterized by the variational inequality

a (Ω; z, v − z)− L (Ω; v − z) ≥ 0, ∀v ∈ K(Ω) (2.2)

with a (Ω; v, v) :=
∫

Ω

|∇v|2+χv2, L (Ω; v) :=
∫

Ω

(1− χ) fv and the closed, convex

cone

K(Ω) :=
{

v ∈ H1
Γ0

(Ω) : v ≥ 0 a.e on Γs

}

,

where H1
Γ0

(Ω) stands for the classical Sobolev space of functions, which belong
to H1 (Ω) and with null traces on the boundary Γ0. Observe that the solution
z ∈ K(Ω) is given by the unique minimizer of quadratic energy functional

E (Ω) :=
1

2
a (Ω; v, v)− L (Ω; v) (2.3)

over K(Ω).
Note also that the weak solution z := z(Ω) of problem (2.1) takes the form:

z :=

{

u in Ωu

w in Ωw

where u is a solution of the linear Helmholtz equation in Ωu and w is a solution
of the nonlinear Signorini problem in Ωw, the two problems are coupled by
transmission conditions prescribed on the interface Σ.

Solutions of problem (2.1) are used in order to evaluate the topological
derivative of the energy given by (2.3) and of the following tracking type shape
functional

J (Ω) =
1

2

∫

Ω

χ(z − zd)
2 =

∫

Ωw

(w − zd)
2 (2.4)

where zd ∈ L2(Ω) is given. Our purpose for (2.4) is to study the topological
optimization problem in order to decrease the functional J by creating a hole
in Ωu to make the state z(Ω) as close as possible to a desired state zd. The case
of the shape functional defined in Ωu can be considered in the same way.
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3. Asymptotic analysis

We present here the different steps of asymptotic analysis, leading to the main
result of the paper. For simplicity, all technical proofs are reported in Sections
4 and 5.1.

3.1. Domain decomposition method

For a small parameter ε > 0, consider the perforated domain Ωε := Ω\Bε (x0)
where Bε (x0) is the closed ball in Ωu of radius ε with center at an arbitrary
point x0, and with the boundary Γε. Let us assume for the sake of simplicity
that the center x0 = O is the origin of the coordinate system and denote Bε (O)
by Bε.

In order to obtain the topological derivative of the shape functional (2.4)
(respectively, (2.3)) associated to the coupled problem (2.1), we need to establish
the asymptotic expansion of the functional J (Ωε) (respectively E (Ωε)) with
zε := z(Ωε) being the solution of the perturbed problem: find a function zε :
(uε, wε) : Ωε → R

2 such that







































−∆uε + uε = 0 in Ωε
u = Ωu\Bε

∂nuε = 0 on Γε

uε = wε on Σ
∂nuε = ∂nwε on Σ
−∆wε = f Ωw

wε = 0 on Γ0

wε ≥ 0, ∂nwε ≥ 0, wε∂nwε = 0 on Γs.

(3.5)

This problem admits a unique weak solution zε for ε small enough, which is
the solution of the variational inequality in the domain Ωε, that is

a (Ωε; zε, v − zε)− L (Ωε; v − zε) ≥ 0, ∀v ∈ K(Ωε) (3.6)

with zε ∈ K(Ωε) :=
{

v ∈ H1
Γ0

(Ωε) : v ≥ 0 a.e. on Γs

}

.
Now, we shall make use of the domain decomposition technique and of the

associated Steklov-Poincaré operator in order to justify (see Sokolowski and Zo-
chowski, 2005) the so-called truncated domain technique, which is an important
tool for variational inequalities. To this end, let us decompose the domain Ω
into two subdomains, ΩR and BR, with the interface ΓR.

Take R > ε > 0 such that Bε ⊂ BR, BR ⊂ Ωu and denote by ΓR the
boundary of BR. Define the truncated open subset ΩR and the ring C (ε,R) by
setting:

ΩR := Ω\BR, C (ε,R) := BR\Bε. (3.7)

We claim that the variational inequality (3.6) can be modified in an appropriate
way, such that Ωε can be replaced by the truncated domain ΩR with R > ε > 0
sufficiently small.
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Proposition 1 Actually, we can show that the restriction zRε ∈ K(ΩR) of
zε ∈ K(Ωε) to the truncated domain is given by the solution z̃ε ∈ K(ΩR) to
the following variational inequality

a (ΩR; z̃ε, v − z̃ε)−L (ΩR; v − z̃ε)+〈Aε (z̃ε, ) , v− z̃ε〉ΓR
≥ 0 ∀v ∈ K(ΩR) (3.8)

where Aε is the Steklov-Poincaré operator, which will replace the portion of the
bilinear form defined over the ring C (ε,R).

The proof of Proposition 1 is left to the reader.
In this way, we obtain that

E (Ωε) =
1

2
a
(

ΩR; z
R
ε , z

R
ε

)

− L
(

ΩR; z
R
ε

)

+ 〈Aε

(

zRε
)

, zRε 〉ΓR

:= j1(ε) + j2(ε)

(respectively J (Ωε) =
1

2

∫

Ωw

(zRε − zd)
2 := j(ε))

and we can evaluate the topological derivative of the shape function by using
the expansions of j1, j2 and j.

For this purpose, we need first to introduce the Steklov-Poincaré operator.
Consider the following problems in BR and C (ε,R), respectively:

Given ϕ ∈ H
1
2 (ΓR) find zϕ0 ∈ H1 (BR) and z

ϕ
ε ∈ H1 (C (ε,R)), the solutions of

{

−∆zϕ0 + zϕ0 = 0 in BR

zϕ0 = ϕ on ΓR
(3.9)

and






−∆zϕε + zϕε = 0 in C (ε,R)
zϕε = ϕ on ΓR

∂nz
ϕ
ε = 0 on Γε.

(3.10)

We define the Steklov-Poincaré operator by the boundary value problem (3.10)
in the following way:

Aε : H
1
2 (ΓR) → H−

1
2 (ΓR)

ϕ → Aε (ϕ) = ∂nϕ.
(3.11)

Taking into account the relation, which follows by integration by parts, we find
that
∫

C(ε,R)

(−∆zϕε + zϕε ) z
ϕ
ε =

∫

C(ε,R)

|∇zϕε |
2
+zϕ2

ε −

∫

ΓR

(∂nz
ϕ
ε ) z

ϕ
ε −

∫

Γε

(∂nz
ϕ
ε ) z

ϕ
ε =0

and since
∫

Γε

(∂nz
ϕ
ε ) z

ϕ
ε = 0
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we get

〈Aε (ϕ) , ϕ〉ΓR
=

∫

C(ε,R)

|∇zϕε |
2 + zϕ2

ε .

By this setting, one can write the problem in the truncated domain as:







































−∆uRε + uRε = 0 in ΩR
u := Ωu\BR

Aεu
R
ε = ∂nu

R
ε on ΓR

uRε = wR
ε on Σ

∂nu
R
ε = ∂nw

R
ε on Σ

−∆wR
ε = f in Ωw

wR
ε = 0 on Γ0

wR
ε ≥ 0, ∂nw

R
ε ≥ 0, wR

ε ∂nw
R
ε = 0 on Γs.

(3.12)

Let zRε be the unique solution of this system. By construction, the following
Lemma can be easily proved.

Lemma 1 For ε > 0 the restriction of the solution zε to ΩR of variational
inequality (3.8) coincides with the solution zRε to variational inequality (3.6) in
the sense of the Sobolev space H1(ΩR), that is

zε(x) = zRε (x) quasi everywhere on ΩR.

Furthermore, the restriction to ΩR of the solution to variational inequality (3.8)
for ε = 0 coincides with the restriction to ΩR of the solution to problem (2.2).

3.2. Approximation of the problem in ΩR

The restriction of zε to the truncated domain solves the boundary value problem
with the nonlocal boundary conditions on ΓR, defined by the Steklov-Poincaré
operator. Indeed, since by domain decomposition, one has

a (Ωε; zε, v) = a
(

ΩR; z
R
ε , v

)

+ a
(

C (ε,R) ; zRε , v
)

and by construction

a
(

C (ε,R) ; zRε , v
)

=
〈

Aε

(

zRε
)

, v
〉

ΓR

=

∫

ΓR

∂nz
R
ε v,

where
∫

ΓR

∂nz
R
ε v stands for the duality pairing between the fractional Sobolev

spaces H−1/2(ΓR) ∋ ∂nz
R
ε = Aε

(

zRε
)

and H1/2(ΓR) ∋ v. Hence the bilinear
form in the topologically perturbed domain Ωε can be replaced by the bilinear
form in the unperturbed domain with a nonlocal pseudo-differential operator.
That is,

a (Ωε; zε, v) = a
(

ΩR; z
R
ε , v

)

+
〈

Aε

(

zRε
)

, v
〉

ΓR
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where Aε is the Steklov-Poincaré operator defined by (3.11).
This replacement is important for purposes of evaluation of the topological

derivative of the shape functional considered for the coupled system. Moreover,
the knowledge of the asymptotic expansion of the Steklov-Poincaré operator as
(see Section 4):

Aε = A0 − ε2B +Rε (3.13)

with a remainder Rε of order o
(

ε2
)

in L(H
1
2 (ΓR) , H

−
1
2 (ΓR) ), leads to the

following asymptotic expansion of the solution in the truncated domain ΩR

zε = z + ε2q + o
(

ε2
)

where zε := zε(ΩR) is the solution of the auxiliary variational inequality prob-
lem:
Find z ∈ K (ΩR) such that

a (ΩR; z, v − z)−ε2 〈B (z) , v − z〉ΓR
−L (ΩR; v − z) ≥ 0, ∀v ∈ K (ΩR) (3.14)

where ε > 0 is small enough. The solution zε ∈ H1 (ΩR) is an outer approxima-
tion of the solution zε ∈ H1 (Ωε) .

Hence, the singular perturbation of the geomerical domain can be replaced
by a regular perturbation of the bilineair form without losing the precision nec-
essary for the evaluation of the topological derivatives. For such regular pertur-
bations, one can use the standard sensitivity analysis of variational inequalities
over polyhedric sets in Dirichlet spaces (see Sokolowski and Zolesio, 1992).

4. Expansion of Steklov-Poincaré operator in ΓR

4.1. Explicit solutions

In order to establish the exact formula for the Steklov-Poincaré operator, we
need the analytic form of solutions to the Helmholtz equation in the circular
and the ring domains BR and C (ε,R), respectively.

Proposition 2 For every ϕ ∈ H
1
2 (ΓR) the solution zϕ0 of (3.9) is given by

zϕ0 (r, θ) =
∑

n∈Z

In (r)

In (R)
ϕne

inθ

where (r, θ) are the polar coordinates, ϕn are the Fourier coefficients in the
expansion of ϕ, and symbols In (r) denote the modified Bessel functions, given
by

In (r) =
∑

k∈N

(r/2)n+2k

k! (n+ k)!
∀n ∈ N (4.15)

with I−n = In.
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Proof. The solution zϕ0 of (3.9) is in H1 (BR) so we can write zϕ0 in the polar
coordinate around the origin by the following form

zϕ0 (r, θ) =
∑

n∈Z

pn (r) e
inθ.

By replacing in the Helmholtz equation, this leads to the modified Bessel equa-
tions (see Watson, 1922; Whittaker and Watson, 1963):

r2p′′n (r) + rp′n (r) −
(

r2 + n2
)

pn (r) = 0 ∀n ∈ Z

whose solutions are given by the sum of the first and second kind of Bessel
functions In and Kn, respectively. Namely

pn (r) = CnIn (r) +DnKn (r) ∀n ∈ Z

for some constants Cn and Dn. With In given by (4.15) and

Kn(r) := − ln(
r

2
)In(r) +

1

2

n−1
∑

k=0

(n− k − 1)!

k!
(
r

2
)2k−n (4.16)

+
1

2

∞
∑

k=1

(−1)k

k!(n+ k)!
[ψ(k) + ψ(n+ k)](

r

2
)2k+n

for any n > 0 and

K0(r) := − ln(
r

2
)I0(r) +

∞
∑

k=1

(−1)k

(k!)2
ψ(k)(

r

2
)2k; (4.17)

here ψ is the logarithmic derivative of the Gamma function Γ, that is,

ψ(x) :=
∂

∂h
ln Γ(x+ h).

Furthermore, as zϕ0 ∈ H1 (BR) Dn = 0, for all n ∈ Z and thus

zϕ0 (r, θ) =
∑

n∈Z

CnIn (r) einθ (4.18)

and the boundary condition leads to

CnIn (R) = ϕn.

Substituting into (4.18), one gets the desired result.
The next proposition gives the analytic form of the solution in the ring and

a comparison between solutions in the circular and the ring domains.
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Proposition 3 For every ϕ ∈ H
1
2 (ΓR) the solution zϕε of (3.10) is given by

zϕε (r, θ) =
∑

n∈Z

K ′

n (ε) In (r)− I ′n (ε)Kn (r)

In (R)K ′
n (ε)− I ′n (ε)Kn (R)

ϕn einθ; (4.19)

we have also that zϕε = zϕ0 + yϕε with

yϕε (r, θ) = −
∑

n∈Z

I ′n (ε)

K ′
n (ε)

In (R)

Kn (R)
−

I ′n (ε)

K ′
n (ε)

(

Kn (r)

Kn (R)
−
In (r)

In (R)

)

ϕn einθ (4.20)

where In and Kn are given by (4.15) and (4.16-4.17), respectively.

Proof. We get expression (4.19) by following the same technique as the one
used in the proof of Proposition 2. To obtain the decomposition zϕε = zϕ0 + yϕε
with yϕε given by (4.20), it suffices to check that

K ′

n (ε) In (r) − I ′n (ε)Kn (r)

In (R)K ′
n (ε)− I ′n (ε)Kn (R)

=
In (r)

In (R)
−

I ′n (ε)

K ′
n (ε)

In (R)

Kn (R)
−

I ′n (ε)

K ′
n (ε)

(

Kn (r)

Kn (R)
−
In (r)

In (R)

)

.

Remark 1 Since ϕ ∈ H
1
2 (ΓR), we can write ϕ as the Fourier series expansion

in terms of θ :

ϕ(θ) =
1

2
a0 +

∞
∑

n=1

(an cos (nθ) + bn sin (nθ)) (4.21)

with the Fourier coefficients satisfying

∞
∑

n=1

√

1 + n2(a2n + b2n) ≤ C,

where C is a constant depending only on R.

Whence, one gets the following expression for zϕ0

zϕ0 (r, θ) =
1

2
a0
I0 (r)

I0 (R)
+

∞
∑

n=1

In (r)

In (R)
(an cos (nθ) + bn sin (nθ)). (4.22)
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Similarly,

yϕε (r, θ) = −
1

2
a0

I ′0 (ε)

K ′

0 (ε)

I0 (R)

K0 (R)
−

I ′0 (ε)

K ′

0 (ε)

(

K0 (r)

K0 (R)
−
I0 (r)

I0 (R)

)

(4.23)

−
∞
∑

n=1

I ′n (ε)

K ′
n (ε)

In (R)

Kn (R)
−

I ′n (ε)

K ′
n (ε)

(

Kn (r)

Kn (R)
−
In (r)

In (R)

)

(an cos (nθ) + bn sin (nθ)).

4.2. Asymptotic expansion of Steklov-Poincaré operator

Now, by explicit solutions in BR and C (ε,R) we can obtain an expansion to
Steklov-Poincaré operator (see Sokolowski and Zochowski, 2013). Let us first
give the following useful Lemma. It gives asymptotic expansions for Bessel
functions.

Lemma 2 (Abramowitz and Stegun, 1964; Watson, 1922) For ε > 0 small
enough, we have for n ≥ 1,

I ′n (ε) =
εn−1

2n (n− 1)!
+ o

(

εn+1
)

K ′

n (ε) =
n!2n−1

εn+1
+ o

(

ε−n−1
)

I ′n (ε)

K ′
n (ε)

= −
ε2n

n! (n− 1)!22n−1
+ o

(

ε2n
)

and for n = 0,

I ′0 (ε) =
ε

2
+ o

(

ε3
)

K ′

0 (ε) = −
1

ε
+ o (ε)

I ′0 (ε)

K ′

0 (ε)
= −

ε2

2
+ o

(

ε2
)

.

Consequently,
I ′n (ε)

K ′
n (ε)

= O
(

ε2n
)

for any n ≥ 1 and
I ′0 (ε)

K ′

0 (ε)
= O

(

ε2
)

. More-

over,
∫ R

ε

rK ′

n (r)
2 = O

(

ε−2n
)

∀n ≥ 1,

∫ R

ε

rK ′

0 (r)
2 = O (ln ε) (4.24)

∫ R

ε

rI ′n (r)2 = O (1) ∀n ≥ 0. (4.25)

Here is the result on the asymptotic expansion the Steklov-Poincaré operator.
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Proposition 4 The Steklov-Poincaré operator admits the following expansion
with respect to ε→ 0+

〈Aε (ϕ) , ϕ〉ΓR
= 〈A0 (ϕ) , ϕ〉ΓR

− 〈B (ϕ) , ϕ〉ΓR
ε2 + o

(

ε2
)

(4.26)

with

〈B (ϕ) , ϕ〉ΓR
=

a20π

4I0 (R)
2 +

(

a21 + b21
)

π

2I1 (R)
2 (4.27)

and a0, a1, b1 are Fourier coefficients of ϕ ∈ H
1
2 (ΓR), given by

a0 =
1

2πR

∫

ΓR

zϕ0 ds;

a1 =
1

πR2

∫

ΓR

zϕ0 x1ds;

b1 =
1

πR2

∫

ΓR

zϕ0 x2ds.

Proof. Let ϕ ∈ H
1
2 (ΓR) be as in (4.21), the solution of (3.10) is decomposed

as zϕε = zϕ0 + yϕε ;

〈Aε (ϕ) , ϕ〉C(ε,R) =

∫

C(ε,R)

|∇zϕε |
2
+ (zϕε )

2 =

∫

C(ε,R)

|∇(zϕ0 + yϕε )|
2
+ (zϕ0 + yϕε )

2

=

∫

C(ε,R)

(|∇zϕ0 |
2
+ (zϕ0 )

2) + 2

∫

C(ε,R)

(∇zϕ0 .∇y
ϕ
ε + zϕ0 .y

ϕ
ε )

+

∫

C(ε,R)

(|∇yϕε |
2
+ (yϕε )

2)

±

∫

Bε(x0)

(|∇zϕ0 |
2
+ (zϕ0 )

2)

= 〈A0 (ϕ) , ϕ〉ΓR
+Rϕ

1 (ε) +Rϕ
2 (ε) +Rϕ

3 (ε)

with

Rϕ
1 (ε) :=

∫

C(ε,R)

|∇yϕε |
2 + (yϕε )

2,

Rϕ
2 (ε) := 2

∫

C(ε,R)

∇zϕ0 .∇y
ϕ
ε + zϕ0 .y

ϕ
ε ,

Rϕ
3 (ε) := −

∫

Bε

|∇zϕ0 |
2
+ (zϕ0 )

2
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where zϕ0 , y
ϕ
ε are defined by (4.22) and (4.23), respectively.

Let us evaluate each of the terms, Rϕ
1 (ε), R

ϕ
2 (ε) and R

ϕ
3 (ε). Recall first that

for any function

|∇f |2 = (∂rf)
2
+

1

r2
(∂θf)

2

therefore,

Rϕ
1 (ε) :=

∫

C(ε,R)

|∇yϕε |
2
+ (yϕε )

2 =

∫

C(ε,R)

[

(∂ry
ϕ
ε )

2
+

1

r2
(∂θy

ϕ
ε )

2
+ (yϕε )

2

]

with

∂ry
ϕ
ε (r, θ) = −

1

2
a0

I ′0 (ε)

K ′

0 (ε)

I0 (R)

K0 (R)
−

I ′0 (ε)

K ′

0 (ε)

(

K ′

0 (r)

K0 (R)
−
I ′0 (r)

I0 (R)

)

−
∞
∑

n=1

I ′n (ε)

K ′
n (ε)

In (R)

Kn (R)
−

I ′n (ε)

K ′
n (ε)

(

K ′

n (r)

Kn (R)
−
I ′n (r)

In (R)

)

(an cos (nθ) + bn sin (nθ)),

and

1

r
∂θy

ϕ
ε (r, θ) =

−
∞
∑

n=1

I ′n (ε)

K ′
n (ε)

In (R)

Kn (R)
−

I ′n (ε)

K ′
n (ε)

n

r

(

Kn (r)

Kn (R)
−
In (r)

In (R)

)

(bn cos (nθ)− an sin (nθ)).

Using the orhogonality of trigonometric functions in [0, 2π] and integrating with
respect to θ, we find

∫

C(ε,R)

(∂ry
ϕ
ε )

2
= π(a21+b

2
1)





I′

1(ε)
K′

1
(ε)

I1(R)
K1(R) −

I′

1
(ε)

K′

1
(ε)





2 R
∫

ε

(

K ′

1 (r)

K1 (R)
−
I ′1 (r)

I1 (R)

)2

rdr+o
(

ε2
)

and

∫

C(ε,R)

1

r2
(∂θy

ϕ
ε )

2
= π(a21+b

2
1)





I′

1(ε)
K′

1
(ε)

I1(R)
K1(R) −

I′

1
(ε)

K′

1
(ε)





2 R
∫

ε

1

r

(

K1 (r)

K1 (R)
−
I1 (r)

I1 (R)

)2

dr+o
(

ε2
)
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by taking into account that
I ′n (ε)

K ′
n (ε)

= O
(

ε2n
)

(n ≥ 1) and
I ′0 (ε)

K ′

0 (ε)
= O

(

ε2
)

.

Clearly,
∫

C(ε,R)

(yϕε )
2
= o

(

ε2
)

. Thus,

Rϕ
1 (ε) = π(a21 + b21)





I′

1(ε)
K′

1
(ε)

I1(R)
K1(R) −

I′

1
(ε)

K′

1
(ε)





2

R1,1(ε) + o
(

ε2
)

with

R1,1(ε) :=

R
∫

ε

[

(

K ′

1 (r)

K1 (R)
−
I ′1 (r)

I1 (R)

)2

+
1

r2

(

K1 (r)

K1 (R)
−
I1 (r)

I1 (R)

)2
]

rdr.

Now, by the properties (4.24-4.25), given from Lemma 2, this yields

Rϕ
1 (ε) =

π(a21 + b21)

4I21 (R)
ε2 + o

(

ε2
)

. (4.28)

And for Rϕ
2 (ε), we have

Rϕ
2 (ε) := 2

∫

C(ε,R)

[∇zϕ0 .∇y
ϕ
ε + zϕ0 y

ϕ
ε ]

= 2(

∫

C(ε,R)

yϕε (−∆zϕ0 + zϕ0 ) +

∫

ΓR

yϕε ∂nz
ϕ
0 +

∫

Γε

yϕε ∂nz
ϕ
0 )

= −2

∫

Γε

yϕε ∂ny
ϕ
ε

because yϕε = 0 on ΓR and ∂nz
ϕ
0 = −∂nyϕε on Γε. Observe that ∂ny

ϕ
ε = −∂ryϕε ,

since the normal vector n is outer to the ring C (ε,R) . So, in view of Lemma 2,
we obtain

Rϕ
2 (ε) = 2π

(

a21 + b21
)









I ′1 (ε)

K ′

1 (ε)

I1 (R)

K1 (R)
−

I ′1 (ε)

K ′

1 (ε)









2

R
∫

ε

K ′

1 (r)K1 (r)

K2
1 (R)

rdr + o
(

ε2
)

= −
π
(

a21 + b21
)

2I1 (R)
2 ε2 + o

(

ε2
)

. (4.29)
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There remains Rϕ
3 (ε). As

Rϕ
3 (ε) := −

∫

Bε

[

|∇zϕ0 |
2
+ (zϕ0 )

2
]

= −

∫

Γε

zϕ0 ∂nz
ϕ
0

= −

∫

Γε

zϕ0 ∂rz
ϕ
0

with zϕ0 given by (4.22) and

∂rz
ϕ
0 =

1

2
a0
I ′0 (r)

I0 (R)
+

∞
∑

n=1

I ′n (r)

In (R)
(an cos (nθ) + bn sin (nθ)),

we find, by the same manner, that

Rϕ
3 (ε) = −

(

πa20

4I0 (R)
2 +

π
(

a21 + b21
)

4I1 (R)
2

)

ε2 + o
(

ε2
)

. (4.30)

Finally, upon collecting the formulas (4.28), (4.29) and (4.30), the result follows.

5. Topological derivative of shape functional

5.1. Conical derivative of zε in Ω

As seen previously, the singular perturbation of the geomerical domain is re-
placed by a regular perturbation of the bilineair form, for which we use the stan-
dard sensitivity analysis of variational inequalities over polyhedric sets. Then,
the first order expansion of the solution with respect to small parameter is ob-
tained. To this end, we recall an abstract result, which is a generalization of
the implicit function theorem for variational inequalities (see Sokolowski and
Zolesio, 1992, Theorem 4.14, p. 177).

In a closed convex set K of a Hilbert space V, consider the following family
of variational inequalites, depending on the parameter t ∈ [0, δ) with δ > 0,

yt ∈ K, at (yt, ϕ− yt) ≥ 〈ft, ϕ− yt〉V ′,V ∀ϕ ∈ K (5.31)

with at (·, ·) : V × V → R being a bilinear form, ft ∈ V ′ and yt := Pt (ft) being
the solution of (5.31).

Theorem 1 Assume that the bilinear form at (·, ·) : V ×V → R is coercive and
continuous uniformly with respect to t ∈ [0, δ) . Let At ∈ L (V ;V ′) be the linear
operator defined by: at (φ, ϕ) = 〈Atφ, ϕ〉V ′,V for all φ, ϕ ∈ V. We suppose that:

1. there exists A′ ∈ L (V ;V ′) such that

At = A0 + tA′ + o (t) in L (V ;V ′)
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2. for t > 0 small enough,

ft = f0 + tf ′ + o (t) in V ′

where f0, f
′ ∈ V ′.

3. for the solutions to the variational inequality

Πf := P0 (f) ∈ K, a0 (Πf, ϕ−Πf) ≥ 〈f, ϕ−Πf〉V ′,V ∀ϕ ∈ K

the following differential stability result holds

∀h ∈ V ′, Π(f0 + εh) = Πf0 + εΠ′h+ o (ε) in V

for ε > 0 small enough, where the mapping Π′ : V ′ → V is continuous
and positively homogeneous and o (ε) is uniform with respect to h ∈ V ′ on
compact subsets of V ′.

Then the solutions to the variational inequality (5.31) are right differentiable
with respect to t at t = 0, and for t small enough,

yt = y0 + ty′ + o (t) in V

where

y′ = Π′ (f ′ −A′y0) .

The following theorem ensures the existence of the conical differential of the
mapping

(0, ε0] ∋ ε→ zRε ∈ H1 (ΩR)

where zRε is the restriction of the solution zε to ΩR. For this aim, consider, for
zR ∈ K := K(ΩR), the restriction of the solution z to ΩR for ε = 0, the convex
cone

SK

(

zR
)

:=

{

v ∈ H1
Γ0

(ΩR) : v ≥ 0 q.e. on Ξ
(

zR
)

a
(

ΩR; z
R, v

)

+
〈

A0

(

zR
)

, zR
〉

ΓR

= L (ΩR, v)

}

(5.32)

where Ξ
(

zR
)

:=
{

x ∈ Γs : z
R (x) = 0

}

is the coincidence set.

Theorem 2 For ε sufficiently small, we have the following expansion of zRε
with respect to the parameter ε, at 0+

zRε = zR + ε2qR + o
(

ε2
)

where qR is the unique solution of the following variational inequality

qR ∈ SK

(

zR
)

, a
(

ΩR, q
R, v − qR

)

−
〈

B
(

zR
)

, v − qR
〉

ΓR

≥ 0, ∀v ∈ SK

(

zR
)

(5.33)
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Proof. We shall apply the abstract result with

at (·, ·) := a (ΩR; ·, ·) + 〈A0 (·) , ·〉ΓR
− t 〈B (·) , ·〉ΓR

,

ft ≡ f and t = ε2, to get an asymptotic expansion of the solution zRε with
respect to ε. Observe that the first assumption is satisfied with

〈A′(w), v〉ΓR
= −〈B(w), v〉ΓR

for all w, v ∈ H
1
2 (ΓR)

and the second assumption is obviously satisfied. Let us consider now zt =
Pt (f) ∈ K, the solution of

at
(

zt, v − zt
)

≥ L
(

ΩR; v − zt
)

∀v ∈ K

and for t = 0, let zR := P0 (f) ∈ K, the solution of the variational inequality
for t = 0, that is,

a
(

ΩR; z
R, v − zR

)

+
〈

A0

(

zR
)

, zR
〉

ΓR

≥ L
(

ΩR; v − zR
)

∀v ∈ K.

Since the convex set K is polyhedric (see Sokolowski and Zolesio, 1992), the
conical derivative of the metric projection onto K at zR is given by the metric
projection onto the cone SK

(

zR
)

(Haraux, 1977; Mignot, 1976), that is, one
has

PK(zR + th) = PK(zR) + tPSK(zR)(h) + o(t)

where the remainder o(t) is uniform on compact subsets of H1
Γ0

(ΩR) . So, the

derivative PSK(zR)(h) ∈ SK

(

zR
)

is the unique solution of the variational in-
equality

a(ΩR,PSK(zR)(h)− h, v − PSK(z)(h)) ≥ 0 ∀v ∈ SK

(

zR
)

.

Therefore, the solution mapping Π : f → Πf ≡ P0 (f), the solution of
the variational inequality for t = 0, is conically differentiable, with the conical
derivative Π′h given by the unique solution to the variational inequality

Π′h ∈ SK

(

zR
)

, a (ΩR,Π
′h− h, v −Π′h) ≥ 0 ∀v ∈ SK

(

zR
)

.

Hence, all assumptions of Theorem 1 having been checked, we conclude the
conical differentiability of solutions with respect to regular perturbations of
bilineair form and

zRε = zR + ε2qR + o
(

ε2
)

with qR := Π′(BzR) being the solution of (5.33).

This Theorem leads to our main results.
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5.2. Topological derivative of shape functional

Our first result gives the topological derivative of the tracking type shape func-
tional. Indeed, we have

Theorem 3 For the shape functional J , given by

J (Ωε) =
1

2

∫

Ωw

(zε − zd)
2 =

1

2

∫

Ωw

(zRε − zd)
2 : =j(ε),

the topological derivative is given by

T (O) = j′′(0) =

∫

Ωw

(zR − zd)q
R,

where qR is the solution of (5.33).

Proof. The shape functional J is composed of two functions, scalar product
in L2 (Ω) and the state in singular domain ε→ zε, so by the chain rule, we find

j′ (ε) =

∫

Ωw

(

zRε − zd
)

.
(

zRε
)′

,

where the prime denotes the derivative with respect to the small parameter ε,
and the fact that there is no first correction in the asymptotic expansion for zRε
leads to

j′
(

0+
)

= lim
ε→0

j′ (ε) = 0.

Now, for the second derivative, we have

j′′ (ε) =

∫

Ωw

(

zRε − zd
)′

.zRε +
(

zRε − zd
)

.
(

zRε
)′′

at ε = 0+. The first term in integral vanishes, since
(

zRε
)′

|ε=0+ = 0, and for the

second term, we have
(

zRε
)′′

|ε=0+ = qR. Finally, we have

T (O) = j′′
(

0+
)

=

∫

Ωw

(zR − zd)q
R.

The second result is devoted to the topological derivative of the energy func-
tional.

Theorem 4 The topological derivative of the energy functional is

T (O) =

∫

ΩR

∇zR∇qR + zRqR −

∫

Ωw

fqR −
1

2

〈

B
(

zR
)

, zR
〉

ΓR
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with qR being the solution of (5.33), zR the solution of the problem in ΩR and
B defined by the asymptotic expansion (3.13) of the Steklov-Poincaré operator.

Since qR is orthogonal to the solution zR by the definition of cone (5.32) we
get

T (O) = −
1

2

〈

B
(

zR
)

, zR
〉

ΓR

.

Proof. For the energy shape functional we have the following decomposition

E(Ωε) :=
1

2
a(Ωε, zε, zε)− L (Ωw; zε)

=
1

2
a(ΩR, z

R
ε , z

R
ε ) +

1

2
〈Aε (zε) , zε〉ΓR

− L
(

Ωw; z
R
ε

)

= E(ΩR) +
1

2
〈Aε (zε) , zε〉ΓR

=: j1(ε) + j2(ε).

For j1, we perform the same analysis as in the previous theorem, and so

j1 (ε) =
1

2

∫

ΩR

∣

∣∇zRε
∣

∣

2
+ (zRε )

2 −

∫

Ωw

fzRε

and the first derivative of j1 is given by

j′1 (ε) =

∫

ΩR

∇zRε ∇
(

zRε
)′

+ zRε
(

zRε
)′

−

∫

Ωw

f
(

zRε
)′

.

Since
(

zRε
)′

|ε=0+ = 0, this yields

j′ (ε) |ε=0+ = 0

and the second derivative at ε = 0+,

j′′1 (ε) |ε=0+ =

∫

ΩR

∇zR∇qR + zRqR −

∫

Ωw

fqR

leads to the topological derivative of j1 being equal zero, taking into account
the orthogonality condition in the definition of cone (5.32).

For j2, we use the asymptotic formula of Steklov-Poincaré operator,

〈Aε (ϕ) , ϕ〉ΓR
= 〈A0 (ϕ) , ϕ〉ΓR

− 〈B (ϕ) , ϕ〉ΓR
ε2 + o

(

ε2
)

to deduce that j′′2 (0) = − 1
2 〈B (ϕ) , ϕ〉

ΓR

with ϕ replaced by the trace of zR.

Hence, the topological derivative of the energy shape functional is given by

T (O) = j′′1 (0)−
1

2

〈

B
(

zR
)

, zR
〉

ΓR

= −
1

2

〈

B
(

zR
)

, zR
〉

ΓR

.
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