PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Different Characterization of Graphene Nano Platelets Reinforced Epoxy Nano Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, Graphene nanoplatelets (GNP) reinforced epoxy nano composites were fabricated via magnetic stirrer and ultra sonification assisted hand layup method. The impact of different weight percentage of GNP (0, 0.25, 0.50, and 1.0%) on different characteristics of nano composites was evaluated. The microstructure analysis of developed nano composite was determined by Field emission scanning electron microscopy. It was examined that epoxy nano composites containing 0.5 wt.% GNP have the highest tensile, flexural, and impact strength compared to neat epoxy. The reduction in tensile and flexural strength is achieved at 1% of GNP. Adding more nanofiller to a certain limit causes non-uniform dispersion and agglomeration of nanoparticles, which results in a reduction in properties. The 1% GNP reinforced nano composite has the highest value of shore hardness.
Twórcy
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering Bhopa l, Madhya Pradesh, India
autor
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering Bhopa l, Madhya Pradesh, India
autor
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering Bhopa l, Madhya Pradesh, India
autor
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering Bhopa l, Madhya Pradesh, India
Bibliografia
  • [1] D.K. Rajak, P.H. Wagh, H. Moustabchir, C.I. Pruncu, Improving the tensile and flexural properties of reinforced epoxy composites by using cobalt filled and carbon/glass fiber, Forces in Mech. 4, 1-8 (2021). DOI: https://doi.org/10.1016/j.finmec.2021.100029
  • [2] A. Takari, A.R. Ghasemi, M. Hamadanian, M. Sarafrazi, A. Najafidoust, Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites, Polym. Test. 93, 1-10 (2021). DOI: https://doi.org/10.1016/j.polymertesting.2020.106890
  • [3] T.T. Hawal, M.S. Patil, R.M. Kulkarni, S.N. Nandurkar, Synergetic effect of rubber on the tensile and flexural properties of Graphene based epoxy-carbon fiber hybrid nanocomposite, Mater. Today Proc. 27, 515-518 (2020). DOI: https://doi.org/10.1016/j.matpr.2019.11.315
  • [4] C.M. Hadden, D.R.K. McDonald, E.J. Pineda, J.A. King, A.M. Reichanadter, I. Miskioglu, S. Gowtham, G.M. Odegard, Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments, Carbon 95, 100-112 (2015). DOI: http://dx.doi.org/10.1016/j.carbon.2015.08.026
  • [5] P. Jojibabu, Y.X. Zhang, B.G. Prusty, A review of research advances in epoxy-based nanocomposites as adhesive materials, Int. J. Adhes. and Adhse. 96, 1-15 (2020). DOI: https://doi.org/10.1016/j.ijadhadh.2019.102454
  • [6] B.P. Mishra, D. Mishra, P. Panda, A. Maharana, An experimental investigation of the effects of reinforcement of graphene fillers on mechanical properties of bi-directional glass/epoxy composite, Mater. Today Proc. 33, 5429-5441 (2020).
  • [7] C. Audibert, A.S. Andreani, É. Lainé, J.C. Grandidier, Mechanical characterization and damage mechanism of a new flax-Kevlar hybrid/epoxy composite, Compos. Struct. 195, 126-135 (2018). DOI: https://doi.org/10.1016/j.compstruct.2018.04.061
  • [8] H. Al Mahmud, M.S. Radue, S. Chinkanjanarot, W.A. Pisani, S. Gowtham, G.M. Odegard, Multiscale modeling of carbon fiber-graphene nanoplatelet-epoxy hybrid composites using a reactive force field, Compos. Part B Eng. 172, 628-635 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.035
  • [9] A. Sarwar, Z. Mahboob, R. Zdero, H. Bougherara, Mechanical characterization of a new Kevlar/Flax/epoxy hybrid composite in a sandwich structure, Polym. Test. 90, 1-12 (2020). DOI: https://doi.org/10.1016/j.polymertesting.2020.106680
  • [10] A. Elmarakbi, R. Ciardiello, A. Tridello, F. Innocente, B. Martorana, F. Bertocchi, F. Cristiano, M. Elmarakbi, G. Belingardi, Effect of graphene nanoplatelets on the impact response of a carbon fibre reinforced composite, Mater. Today Commun. 25, 1-11 (2020). DOI: https://doi.org/10.1016/j.mtcomm.2020.101530
  • [11] R. Sherman, V. Chalivendra, A. Hall, M. Haile, L. Nataraj, M. Coatney, Y. Kim, Electro-mechanical characterization of three-dimensionally conductive graphite/epoxy composites under tensile and shear loading, Compos. Commun. 15, 30-33 (2019). DOI: https://doi.org/10.1016/j.coco.2019.05.010
  • [12] U. Kilic, M.M. Sherif, O.E. Ozbulut, Tensile properties of graphene nanoplatelets/epoxy composites fabricated by various dispersion techniques, Polym. Test. 76, 181-191 (2019). DOI: https://doi.org/10.1016/j.polymertesting.2019.03.028
  • [13] O. Aluko, S. Gowtham, G.M. Odegard, The development of multiscale models for predicting the mechanical response of GNP reinforced composite plate, Compos. Struct. 206, 526-534 (2018). DOI: https://doi.org/10.1016/j.compstruct.2018.08.093
  • [14] Y.C. Chiou, H.Y. Chou, M.Y. Shen, Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites, Mater. Des. 178, 1-11 (2019). DOI: https://doi.org/10.1016/j.matdes.2019.107869
  • [15] V.B. Mohan, K. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations, Compos. Part B Eng. 142, 200-220 (2018). DOI: https://doi.org/10.1016/j.compositesb.2018.01.013
  • [16] T. Subhani, M. Latif, I. Ahmad, S.A. Rakha, N. Ali, Aqeel A. Khurram, Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds, Mater. Des. 87, 436-444 (2015). DOI: http://dx.doi.org/10.1016/j.matdes.2015.08.059.
  • [17] A. Kumar, K. Kumar, P.K. Ghosh, K.L. Yadav, MWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite, Ultrason. Sonochem. 41, 37-46 (2017). DOI: http://dx.doi.org/10.1016/j.ultsonch.2017.09.005
  • [18] M.R. Zakaria, H.Md. Akil, M.H.A. Kudus, A.H. Kadarman, Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system, Compos. Struct. 132, 50-64 (2015). DOI: http://dx.doi.org/10.1016/j.compstruct.2015.05.020
  • [19] M.R. Zakaria, H. Md. Akil, M.H.A. Kudus, M.B.H. Othman, Compressive properties and thermal stability of hybrid carbon nanotube-alumina filled epoxy nanocomposites, Compos. Part B Eng. 91, 235-242 (2016). DOI: http://dx.doi.org/10.1016/j.compositesb.2016.01.013
  • [20] Y. Wang, D. Yao, F. Su, D. Wang, Y. Zheng, Enhanced the mechanical and damping properties of epoxy nanocomposites by filling with a multi-core solvent-free nanofluids, Mater. Lett. 274, 1-4 (2020). DOI: https://doi.org/10.1016/j.matlet.2020.127999
  • [21] Y. Li, L. Dong, X. Zhang, Y. Lu, W. Fang, Y. Yang, Preparation of carbon nanotubes/epoxy composites using novel aerogel substrates, Mater. Lett. 160, 432-435 (2015). DOI: http://dx.doi.org/10.1016/j.matlet.2015.08.010
  • [22] M.W. Akhtar, Y.S. Lee, D.J. Yoo, J.S. Kim, Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity, Compos. Part B Eng. 131, 184-195 (2017). DOI: http://dx.doi.org/10.1016/j.compositesb.2017.07.067
  • [23] S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nuesch, B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites, Carbon 50, 5380-5386 (2012).
  • [24] S. Han, Q. Meng, Z. Qiu, A. Osman, R. Cai, Y. Yu, T. Liu, S. Araby, Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites, Polymer 184, 1-8 (2019). DOI: https://doi.org/10.1016/j.polymer.2019.121884
  • [25] M. Lee, T. Wang, J. Tsai, Characterizing the interfacial shear strength of graphite/epoxy composites containing functionalized graphene, Compos. Part B Eng. 98, 308-313 (2016). DOI: http://dx.doi.org/10.1016/j.compositesb.2016.05.001
  • [26] J. Cha, J. Kim, S. Ryu, Soon H. Honga, Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets, Compos. Part B Eng. 162, 283-288 (2019). DOI: https://doi.org/10.1016/j.compositesb.2018.11.01
  • [27] A. Namdev, A. Telang, R. Purohit, Synthesis and mechanical characterization of epoxy hybrid composites containing graphene nanoplatelets, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 236, 7984-7998 (2022).
  • [28] Y. Dan-Mallam, T. Hong, M.S.A. Majid, Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/Pet Fibre Reinforced Epoxy Hybrid Composite, Int. J. Polym. Sci. 1-14 (2015). Doi: http://dx.doi.org/10.1155/2015/371958
  • [29] P.S. Yadav, R. Purohit, A. Namdev, Physical and mechanical properties of hybrid composites using Kevlar fibre and nano-SiO2, Adv. Mater. Process. Technol. 8, 2057-2069 (2022). DOI: https://doi.org/10.1080/2374068X.2022.2034312
  • [30] S.G. Prolongo, A. Jimenez-Suarez, R. Moriche, A. Ureña, In situ processing of epoxy composites reinforced with graphene nanoplatelets, Compos. Sci. Technol. 86, 185-191 (2013).
  • [31] G. Manjunatha, S.N. Nagesh, R. George, Effect of Dispersion and Improper Bonding of Nanofiller Polymer Composites, IOP Conf. Ser. Mater. Sci. Eng. 1013, 1-6 (2021). DOI: 10.1088/1757-899X/1013/1/012014
  • [32] T. Topkaya, Y.H. Çelik, E. Kilickap, Mechanical properties of fiber/graphene epoxy hybrid composites, J. of Mech. Sci. and Tech. 34, 4589-4595 (2020). DOI: http://doi.org/10.1007/s12206-020-1016-4
  • [33] S. Kumar, K.K. Singh, J. Ramkumar, Comparative study of the influence of graphene nanoplatelets filler on the mechanical and tribological behavior of glass fabric-reinforced epoxy composites, Polym. Compos. 1-15 (2020). DOI: http://doi.org/10.1002/pc.25804
  • [34] G. Reddy, V. Krishna, K. Shanker, Tensile and Water Absorption Properties of FRP Composite Laminates without Voids and With Voids, Procedia Eng. 173, 1684-1691 (2017).
  • [35] M. Boopalan, M. Niranjanaa, M.J. Umapathy, Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites, Compos. Part B Eng. 51, 54-57 (2013). DOI: http://dx.doi.org/10.1016/j.compositesb.2013.02.033
  • [36] C. Chiang, H. Chou, M. Shen, Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates, Compos. Part A 130, 1-11 (2020). DOI: https://doi.org/10.1016/j.compositesa.2019.105718
  • [37] A. Namdev, A. Telang, R. Purohit, Experimental investigation on mechanical and wear properties of GNP/Carbon fiber/epoxy hybrid composites, Mater. Res. Express 9, 1-17(2022). DOI: https://doi.org/10.1088/2053-1591/ac4e3f
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2966e46-ed21-4a0d-a839-fb2742ee6bbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.