Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Y2O3-MgO nanocomposites are one of the most promising materials for hypersonic infrared windows and domes due to their excellent optical transmittance and mechanical properties. In this study, influence of the calcination temperature of Y2O3-MgO nanopowders on the microstructure, IR transmittance, and hardness of Y2O3-MgO nanocomposites was investigated. It was found that the calcination temperature is related to the presence of residual intergranular pores and grain size after spark plasma sintering. The nanopowders calcined at 1000°C exhibits the highest infrared transmittance (82.3% at 5.3 μm) and hardness (9.99 GPa). These findings indicated that initial particle size and distribution of the nanopowders are important factors determining the optical and mechanical performances of Y2O3-MgO nanocomposites.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1481--1484
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- The 4th Research and Development Insititute-4, Agency of Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- The 4th Research and Development Insititute-4, Agency of Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- The 4th Research and Development Insititute-4, Agency of Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- The 4th Research and Development Insititute-4, Agency of Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- The 4th Research and Development Insititute-4, Agency of Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
Bibliografia
- [1] J. Wang, D. Chen, E.H. Jordan, M. Gell, J. Am. Ceram. Soc. 93 (11), 3535-3538 (2010).
- [2] S. Xu, J. Li, C. Li, Y. Pan, J. Guo, J. Am. Ceram. Soc. 98 (3), 1019-1026 (2015).
- [3] S. Xu, J. Li, C. Li, Y. Pan, J. Guo, J. Am. Ceram. Soc. 98 (9), 2796-2802 (2015).
- [4] J. Xie, X. Mao, X. Li, B. Jiang, L. Zhang, Ceram. Int. 43, 40-44 (2017).
- [5] B. H. Kear, R. Sadangi, V. Shukla, T. Stefanik. R. Gentilman, Proc. of SPIE 5786, 227-233 (2005).
- [6] J. Wang, L. Zhang, D. Chen, E. H. Jordan, M. Gell, J. Am. Ceram. Soc. 95 (3), 1033-1037 (2012).
- [7] D. C. Harris, L. R. Cambrea, L. F. Johnson, R. T. Seaver, M. Baronowski, R. Gentilman, C. S. Nordahl, T. Gattuso, S. Silberstein, P. Rogan, T. Hartnett, B. Zelinski, W. Sunne, E. Fest, W.H. Poisl, C. B. Willingham, G. Turri, C. Warren, M. Bass, D. E. Zelmon, S. M. Goodrich, J. Am. Ceram. Soc. 96 (12). 3828-3835 (2013).
- [8] T. Stefanik, R. Gentilman, P. Hogan, Proc. of SPIE 6545, 65450A (2007).
- [9] L. Huang, W. Yao, J. Liu, A. K. Mukherjee, J. M. Schoenung, Scr. Mater. 75, 18-21 (2014).
- [10] H. J. Ma, W. K. Jung, C. Baek, D. K. Kim, J. Eur. Ceram. Soc. 37, 4902-4911 (2017).
- [11] S. Xu, J. Li, H. Kou, Y. Shi, Y. Pan, J. Guo, Ceram. Int. 41, 3312-3317 (2015).
- [12] A. Iyer, J. K. M. Garofano, J. Reutenaur, S.L. Suib, M. Aindow, M. Gell, E. H. Jordan, J. Am. Ceram. Soc. 96 (2), 346-350 (2013).
- [13] K. Morita, B.-N. Kim, K. Hiraga, H. Yoshida, Scr. Mater. 58, 1114-1117 (2008).
- [14] K. T. Kim, T. Min, D. W. Kim, J. Korean Powder Metall. Inst. 23, 263-269 (2016).
- [15] J.-K. Han, D.-W. Shin, B. Madavali, S.-J. Hong, J. Korean Powder Metall. Inst. 24, 115-121 (2017).
- [16] D. T. Jiang, A. K. Mukherjee, J. Am. Ceram. Soc. 93 (3), 769-773 (2010).
- [17] R. Apetz, M. P. B. van Bruggen, J. Am. Ceram. Soc. 86 (3), 480-486 (2003).
- [18] B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhou, Y. Pai, J. Guo, Opt. Mater. 36, 1591-1597 (2014).
Uwagi
EN
1. This work was supported by DAPA and ADD.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f295ea92-61e0-4b11-a305-e0f72dfd346c