Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Particulate matter capture is a necessary concern for safeguarding human health and quality of life. This article focuses on enhancing particulate matter capture efficiency via electrostatic precipitation. It deals with expanding the fundamental principle of the single electrode in chimney tubular precipitator to a configuration with multi-tubular precipitation chambers with the aim of increasing the collection area and consequently enhancing the overall efficiency of the separator. The velocity distribution of flue gases was observed through Computational fluid dynamics using Ansys Fluent. The collection area for each proposed separator was calculated, including its enlargement, and the flow uniformity of flue gases through the tubes was assessed. Increasing the number of tubes from one to three resulted in 1.3 times an increase in the collection area. Further expansions to 4, 5, and 7 tubes led to increases of 1.6, 1.7, and 2.1 times, respectively. It was found that due to non-uniform flow distribution through the tubes, the flue gas velocities varied, with values ranging from 0.186 to 1.178 m. s-1 . Non-uniform gas flow prevents full utilization of the separator potential, thereby reducing its efficiency. For uniform flow, it would be appropriate to seek a suitable solution for a flow straightener. Additionally, the high particle velocities should be avoided to prevent particles from being carried out of the stack with the flue gas, allowing sufficient time for capture.
Wydawca
Rocznik
Tom
Strony
201--208
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Research Centre, University of Žilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
autor
- Research Centre, University of Žilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
autor
- Research Centre, University of Žilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
autor
- Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
autor
- Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
Bibliografia
- 1.Ahmadi, M., Berkhoff, A.P., De Boer, A., n.d. Computational Fluid Dynamics Approach to Evaluate Electrostatic Precipitator Performance.
- 2.Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P., le Grange, L.A., Arif, A., 2016. CFD modeling of particle charging and collection in electrostatic precipitators. J Electrostat 84, 10-22, DOI: 10.1016/J.ELSTAT.2016.08.008
- 3.Drga, J., Holubčík, M., Čajová Kantová, N., Červenka, B., 2022. Design of a Low-Cost Electrostatic Precipitator to Reduce Particulate Matter Emissions from Small Heat Sources. Energies 2022, Vol. 15, Page 4148 15, 4148, DOI: 10.3390/EN15114148
- 4.Elbl, P., Sitek, T., Lachman, J., Lisý, M., Baláš, M., Pospíšil, J., 2022. Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution. Energy 256, 124680, DOI: 10.1016/J.ENERGY.2022.124680
- 5.Eom, Y.S., Kang, D.H., Choi, D.H., 2019. Numerical analysis of PM2.5 particle collection efficiency of an electrostatic precipitator integrated with double skin façade in a residential home. Build Environ 162, 106245, DOI: 10.1016/J.BUILDENV.2019.106245
- 6.Farnoosh, N., Adamiak, K., Castle, G.S.P., 2010. 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J Electrostat 68, 513-522, DOI: 10.1016/J.ELSTAT.2010.07.002
- 7.Grigonytė-Lopez Rodriguez, J., Suhonen, H., Laitinen, A., Tissari, J., Kortelainen, M., Tiitta, P., Lähde, A., Keskinen, J., Jokiniemi, J., Sippula, O., 2020. A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers. Renew Energy 145, 521-529, DOI: 10.1016/J.RENENE.2019.06.052
- 8.Guo, B., Yu, A., Guo, J., 2015. Numerical Modelling of ESP for Design Optimization. Procedia Eng 102, 1366-1372, DOI: 10.1016/J.PROENG.2015.01.268
- 9.Høgh Petersen, H., 1988. Performance Of Electrostatic Precipitators. Top Catal 4, 21-31, DOI: 10.1016/B978-0-12-207690-9.50007-6
- 10.Holubčík, M., Kantová, N.Č., Trnka, J., Jandačka, J., 2022. Decreasing Solid Aerosols from Small Heat Sources Using the Optimized Electrostatic Precipitator. Atmosphere 2022, 13, 1438, DOI: 10.3390/ATMOS13091438
- 11.Holubčík, M., Trnka, J., Čajová Kantová, N., 2024. Using heat exchanger for construction of electrostatic precipitator in a small heat source. J Electrostat 128, 103884, DOI: 10.1016/J.ELSTAT.2023.103884
- 12.Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A., Czech, T., 2024. Recent advances in electrostatic precipitation of particles from flue gases generated by domestic heating appliances. A brief outlook. J Electrostat 129, 103922, DOI: 10.1016/J.ELSTAT.2024.103922
- 13.Jaworek, A., Sobczyk, A.T., Marchewicz, A., Krupa, A., Czech, T., 2021. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renewable and Sustainable Energy Reviews 137, 110446, DOI: 10.1016/J.RSER. 2020.110446
- 14.Kantová, N.Č., Čaja, A., Patsch, M., Holubčík, M., Ďurčanský, P., 2021. Dependence of the Flue Gas Flow on the Setting of the Separation Baffle in the Flue Gas Tract. Applied Sciences 2021, Vol. 11, Page 2961 11, 2961, DOI: 10.3390/APP11072961
- 15.Lasek, J.A., Matuszek, K., Hrycko, P., Piechaczek, M., 2018. Adaptation of hard coal with high sinterability for solid fuel boilers in residential heating systems. Fuel 215, 239-248, DOI: 10.1016/J.FUEL.2017.11.020
- 16.Li, S., Huang, Y., Zheng, Q., Deng, G., Yan, K., 2019. A numerical model for predicting particle collection efficiency of electrostatic precipitators. Powder Technol 347, 170-178, DOI: 10.1016/J.POWTEC.2019.02.040
- 17.Lim, M.T., Phan, A., Roddy, D., Harvey, A., 2015. Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review. Renewable and Sustainable Energy Reviews 49, 574-584, DOI: 10.1016/J.RSER.2015.04.090
- 18.Long, Z., Yao, Q., 2010. Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J Aerosol Sci 41, 702-718, DOI: 10.1016/J.JAEROSCI.2010.04.005
- 19.Mizuno, A., 2000. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation 7, 615-624, DOI: 10.1109/94.879357
- 20.Molchanov, O., Krpec, K., Horák, J., 2020. Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units. J Clean Prod 246, 119022, DOI: 10.1016/J.JCLEPRO.2019.119022
- 21.Singh, K., Tripathi, D., Singh, K., Tripathi, D., 2021. Particulate Matter and Human Health. Environmental Health, DOI: 10.5772/INTECHOPEN.100550
- 22.Skodras, G., Kaldis, S.P., Sofialidis, D., Faltsi, O., Grammelis, P., Sakellaropoulos, G.P., 2006. Particulate removal via electrostatic precipitators — CFD simulation. Fuel Processing Technology 87, 623-631, DOI: 10.1016/J.FUPROC.2006.01.012
- 23.STN EN 13240 (06 1206) 1.12.2002 | Technická norma | NORMSERVIS s.r.o. [WWW Document], n.d. URL https://eshop.normservis.sk/norma/stnen-13240-1.12.2002.html (accessed 10.25.24).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2937479-6fbd-4b41-af53-0b1a5f04da1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.