PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimal Intelligent Control for HVAC Systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a novel Optimal Fuzzy Proportional-Integral-Derivative Controller (OFPIDC) is designed for controlling the air supply pressure of Heating, Ventilation and Air-Conditioning (HVAC) system. The parameters of input membership functions, output polynomial functions of first-order Sugeno, and PID controller coefficients are optimized simultaneously by random inertia weight Particle Swarm Optimization (RNW-PSO). Simulation results show the superiority of the proposed controller than similar non-optimal fuzzy controller.
Rocznik
Strony
192--200
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical and Robotic Engineering,Garmsar Branch, Islamic Azad University of Iran, Garmsar, Iran
  • Department of Electrical Engineering, Aeronautical University of Science and Technology,Tehran, Iran
  • Department of Electrical and Robotic Engineering,Garmsar Branch, Islamic Azad University of Iran, Garmsar, Iran
autor
  • Department of Electrical and Robotic Engineering,Garmsar Branch, Islamic Azad University of Iran, Garmsar, Iran
Bibliografia
  • [1] Radakovic, Z. R., Milosevic, V. M., and Radakovic, S. B., Application of temperature fuzzy controller in an indirect resistance furnace, Applied Energy, 2002, vol. 73, pp. 167-182.
  • [2] Nguyen, H. T., Prasad, N. R., Walker, C. L., and Walker, E. A., A First Course in Fuzzy and Neural Control, USA: Chapman & Hall/ CRC, 2003.
  • [3] Zhi Qiao, W., Masaharu Mizumoto, Fuzzy sets and systems, 1996, vol. 78, pp. 23-35.
  • [4] Pedrycz, W., and de Oliveira, J. V., Optimization of fuzzy models, IEEE Trans. Syst., Man, Cyber., 1996, vol. 26, no.4, pp. 627 – 636.
  • [5] Hyun-Joon, C., Kwang-Bo, C., Bo-Hyeun, W., Fuzzy-PID hybrid control: automatic rule generation using genetic algorithm, Fuzzy sets and systems, 1997, vol. 92, no. 3, pp. 305-316.
  • [6] Alcala, R., Casillas, J., Cordon, O., Gonzalez, A., and Herrera, F., A genetic rule weighting and selection process for fuzzy control of heating, ventilation and air conditioning systems, Engineering application of Artificial Intelligence, 2005, vol. 28, pp. 279 – 296.
  • [7] Qiang, X., Wen-Jian, C., and Ming, H., A practical decentralized PID auto-tuning method for TITO systems under closed –loop control, International Journal of Innovative Computing, Information and Control, 2006, vol. 2, no. 2, pp. 305-322.
  • [8] Qing-Gao, W., Chang-Chieh, H., Yong, Z., and Qiang, B., Multivariable Controller Auto-Tuning with its Application in HVAC Systems, Proc. of the American Control Conf., California, 1999, vol. 6, pp. 4353 – 4357.
  • [9] Mudi, R.K., and Pal, N.R., A robust self-tuning scheme for PI and PD type fuzzy controllers, IEEE trans. on fuzzy sys., 1997, vol. 7, no. 1, pp. 2-16.
  • [10] Dirankov, D., Hellendorn, H., and Reintrank, M., An introduction to Fuzzy Control, New York: Spinger-Verlag, 1993.
  • [11] Jang, J., Sun, C., and Mizutani, E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, First Edition, Prentice Hall, 1997.
  • [12]Modares, H., Alfi, A., and Naghibi Sistani, M. B., Parameter Estimation of Bilinear Systems Based on an Adaptive Particle Swarm Optimization, Eng. Appl. Artifi. Intell., 2010, vol. 23, pp.1105-1111.
  • [13]Zhang, L., Yu, H., Hu, S., A New Approach to Improve Particle Swarm Optimization, Proc. of the international conf. on Genetic and evolutionary computation, 2003, 134-139.
  • [14] Shi, Y., Eberhart, R., A Modified Particle Swarm Optimizer, in Proc. of the IEEE Conf. On Evolutionary Computation, Singapore, 1998, pp. 69-73.
  • [15] Eberhart, R.C., and Shi, Y., Tracking and optimizing dynamic systems with particle swarms, in Proc. IEEE Congr. Evolutionary Computation , Seoul, Korea, 2001, pp. 94–97.
  • [16] Jian, W., and Wenjian, C., Development of an adaptive neuro-fuzzy method for supply air pressure control in HVAC system, Syst., Man, Cybern., IEEE, 2000.
  • [17] Al-Fandi, M., Jaradat, M.A.K., and Sardahi, Y., Optimal PI-fuzzy logic controller of glucose concentration using genetic algoritm, International Journal of Knowledge-based and Intelligent Engineering Systems, 2011, vol. 15, pp. 99-117.
  • [18] A.K., Pal, and Mudi, R.K., Self-Tuning Fuzzy PI Controller and its Application to HVAC Systems, IJCC, 2008, vol. 6, no. 1, pp. 25-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f28fc61e-63aa-4c4d-92ee-0d90b943ef43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.