PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical hydrolysis of hemicellulose from sugarcane bagasse. A comparison between the classical sulfuric acid method with the acidic ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dilute sulfuric acid and acidic ionic liquids are pretreatment methods used to selectively hydrolyze hemicellulose from lignocellulosic biomasses. In this work, a comparison between these techniques is carried out by treating sugarcane bagasse both with 1-ethyl-3-methylimidazolium hydrogen sulfate at different ionic-liquid and water contents and with H 2 SO 4 at the same conditions and equivalent ionic liquid molar contents. Results from the use of ionic liquid showed that it was possible to tune the biomass treatment either to achieve high hemicellulose hydrolysis yields of 72.5 mol% to very low furan and glucose co-production, or to obtain furfural at moderate yields of 18.7 mol% under conditions of low water concentration. In comparison to the use of ionic liquid, sulfuric acid pretreatment increased hemicellulose hydrolysis yields by 17%, but the 8.6 mol% furfural yield was also higher, and these yields were obtained at high water concentration conditions. Besides, no such tuning ability of the biomass treatment conditions can be made.
Twórcy
  • Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
  • Permanent address: Departamento de Bioquímica, Instituto de Química Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos, 149 Centro de Tecnologia, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil
  • Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
  • Permanent address: CICECO, Aveiro Institute of Materials, Department of Chemistry University of Aveiro, 3810-193 Aveiro, Portugal
  • Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649038, Lisboa, Portugal, fax: +351217163636; phone: +351210924600 ext. 4224
Bibliografia
  • [1] A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues. I: sugarcane bagasse, Bioresour. Technol. 74 (2000) 69–80. https://doi.org/10.1016/S0960-8524(99)00142-X.
  • [2] M.E. Zakrzewska, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block, Chem. Rev. 111 (2011) 397–417. https://doi.org/10.1021/cr100171a.
  • [3] Y. Luo, Z. Li, X. Li, X. Liu, J. Fan, J.H. Clark, C. Hu, The production of furfural directly from hemicellulose in lignocellulosic biomass: A review, Catal. Today. 319 (2019) 14–24. https://doi.org/10.1016/j.cattod.2018.06.042.
  • [4] L. de F. Vilela, V.P.G. de Araujo, R. de S. Paredes, E.P. da S. Bon, F.A.G. Torres, B.C. Neves, E.C.A. Eleutherio, Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain, AMB Express. 5 (2015) 16. https://doi.org/10.1186/s13568-015-0102-y.
  • [5] P.J. Du Toit, S.P. Olivier, P.L. Van Biljon, Sugar cane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and amino acid composition, Biotechnol. Bioeng. 26 (1984) 1071–1078.
  • [6] F.M. Gírio, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-Łukasik, Hemicelluloses for fuel ethanol: A review, Bioresour. Technol. 101 (2010) 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088.
  • [7] V. Kumar, P. Binod, R. Sindhu, E. Gnansounou, V. Ahluwalia, Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities, Bioresour. Technol. 269 (2018) 443–451. https://doi.org/10.1016/j.biortech.2018.08.042.
  • [8] B. Kamm, P.R. Gruber, M. Kamm, Biorefineries–Industrial Processes and Products, Ullmann’s Encycl. Ind. Chem. (2016) 1–38. https://doi.org/doi:10.1002/14356007.l04_l01.pub2.
  • [9] T. Ståhlberg, W. Fu, J.M. Woodley, A. Riisager, Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable chemicals, ChemSusChem. 4 (2011) 451–458. https://doi.org/10.1002/cssc.201000374.
  • [10] M.H.L. Silveira, A.R.C. Morais, A.M. Da Costa Lopes, D.N. Olekszyszen, R. Bogel-Łukasik, J. Andreaus, L. Pereira Ramos, Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries, ChemSusChem. 8 (2015) 3366–3390. https://doi.org/10.1002/cssc.201500282.
  • [11] V.T. de O. Santos, G. Siqueira, A.M.F. Milagres, A. Ferraz, Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids, Ind. Crops Prod. 111 (2018) 722–730. https://doi.org/10.1016/j.indcrop.2017.11.053.
  • [12] W. Hui, Y. Zhou, Y. Dong, Z.J. Cao, F.Q. He, M.Z. Cai, D.J. Tao, Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids, Green Energy Environ. 4 (2019) 49–55. https://doi.org/10.1016/j.gee.2018.06.002.
  • [13] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (2005) 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.
  • [14] A. V. Carvalho, A.M. Da Costa Lopes, R. Bogel-Łukasik, Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction, RSC Adv. 5 (2015) 47153–47164. https://doi.org/10.1039/c5ra07159c.
  • [15] A.M. da Costa Lopes, R.M. Łukasik, Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid, ChemSusChem. 11 (2018) 1099–1107. https://doi.org/10.1002/cssc.201702231.
  • [16] A.M. da Costa Lopes, R.M.G.G. Lins, R.A. Rebelo, R.M. Lukasik, Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid, Green Chem. 20 (2018) 4043–4057. https://doi.org/10.1039/c8gc01763h.
  • [17] J.R. Bernardo, F.M. Gírio, R.M. Łukasik, The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis, Molecules. 24 (2019) 808. https://doi.org/10.3390/molecules24040808.
  • [18] A. Sant’Ana da Silva, S.H. Lee, T. Endo, E.P. Bon, Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), Bioresour. Technol. 102 (2011) 10505–10509. https://doi.org/10.1016/j.biortech.2011.08.085.
  • [19] B.M. Matsagar, P.L. Dhepe, Brönsted acidic ionic liquid-catalyzed conversion of hemicellulose into sugars, Catal. Sci. Technol. 5 (2015) 531–539. https://doi.org/10.1039/c4cy01047g.
  • [20] A.S. Amarasekara, B. Wiredu, Degradation of Cellulose in Dilute Aqueous Solutions of Acidic Ionic Liquid 1-(1-Propylsulfonic)-3-methylimidazolium Chloride, and p-Toluenesulfonic Acid at Moderate Temperatures and Pressures, Ind. Eng. Chem. Res. 50 (2011) 12276–12280. https://doi.org/Doi10.1021/Ie200938h.
  • [21] A. Rusanen, K. Lappalainen, J. Kärkkäinen, T. Tuuttila, M. Mikola, U. Lassi, Selective hemicellulose hydrolysis of Scots pine sawdust, Biomass Convers. Biorefinery. 9 (2019) 283–291. https://doi.org/10.1007/s13399-018-0357-z.
  • [22] A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, J. Wolfe, Determination of total solids in biomass and total dissolved solids in liquid process samples, National Renewable Energy Laboratory, Golden, Colorado, USA, 2008.
  • [23] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbohydrates and lignin in biomass - Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden, Colorado, USA, 2011.
  • [24] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of Ash in Biomass, National Renewable Energy Laboratory - NREL, Golden, Colorado, USA, 2005.
  • [25] S.P. Magalhães da Silva, A.M. da Costa Lopes, L.B. Roseiro, R. Bogel-Łukasik, Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids, RSC Adv. 3 (2013) 16040–16050. https://doi.org/10.1039/c3ra43091j.
  • [26] N.N. Deshavath, M. Mohan, V.D. Veeranki, V. V Goud, S.R. Pinnamaneni, T. Benarjee, Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production, 3 Biotech. 7 (2017) 139. https://doi.org/10.1007/s13205-017-0752-3.
  • [27] A. Brandt, M.J. Ray, T.Q. To, D.J. Leak, R.J. Murphy, T. Welton, Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures, Green Chem. 13 (2011) 2489–2499. https://doi.org/10.1039/c1gc15374a.
  • [28] F. Tao, H. Song, L. Chou, Catalytic conversion of cellulose to chemicals in ionic liquid, Carbohydr. Res. 346 (2011) 58–63. https://doi.org/10.1016/j.carres.2010.10.022.
  • [29] Z. Chen, J. Long, Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids, Bioresour. Technol. 214 (2016) 16–23. https://doi.org/10.1016/j.biortech.2016.04.089.
  • [30] Z. Wang, J. Gräsvik, L.J. Jönsson, S. Winestrand, Comparison of [HSO4]−, [Cl]− and [MeCO2]− as anions in pretreatment of aspen and spruce with imidazolium-based ionic liquids, BMC Biotechnol. 17 (2017) 82. https://doi.org/10.1186/s12896-017-0403-0.
  • [31] P. Halder, S. Kundu, S. Patel, A. Setiawan, R. Atkin, R. Parthasarthy, J. Paz-Ferreiro, A. Surapaneni, K. Shah, Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids, Renew. Sustain. Energy Rev. 105 (2019) 268–292. https://doi.org/10.1016/j.rser.2019.01.052.
  • [32] M. Mohan, N.N. Deshavath, T. Banerjee, V. V Goud, V.V. Dasu, Ionic Liquid and Sulfuric Acid-Based Pretreatment of Bamboo: Biomass Delignification and Enzymatic Hydrolysis for the Production of Reducing Sugars, Ind. Eng. Chem. Res. 57 (2018) 10105–10117. https://doi.org/10.1021/acs.iecr.8b00914.
  • [33] A.S. Patri, L. McAlister, C.M. Cai, R. Kumar, C.E. Wyman, CELF significantly reduces milling requirements and improves soaking effectiveness for maximum sugar recovery of Alamo switchgrass over dilute sulfuric acid pretreatment, Biotechnol. Biofuels. 12 (2019) 177. https://doi.org/10.1186/s13068-019-1515-7.
  • [34] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of ash in biomass. NREL Laboratory Analytical Procedure (LAP), 2008. http://www.nrel.gov/docs/gen/fy08/42622.pdf.
  • [35] R. Bielski, G. Grynkiewicz, Furan platform chemicals beyond fuels and plastics, Green Chem. 23 (2021) 7458–7487. https://doi.org/10.1039/d1gc02402g.
  • [36] S.J. Chen, X. Chen, M.J. Zhu, Xylose recovery and bioethanol production from sugarcane bagasse pretreated by mild two-stage ultrasonic assisted dilute acid, Bioresour. Technol. 345 (2022) 126463. https://doi.org/10.1016/j.biortech.2021.126463.
  • [37] H. Xu, X. Li, W. Hu, L. Lu, J. Chen, Y. Zhu, H. Zhou, C. Si, Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives, Fuel Process. Technol. 234 (2022) 107338. https://doi.org/10.1016/j.fuproc.2022.107338.
  • [38] Y. Dai, S. Yang, T. Wang, R. Tang, Y. Wang, L. Zhang, High conversion of xylose to furfural over corncob residue-based solid acid catalyst in water-methyl isobutyl ketone, Ind. Crops Prod. 180 (2022) 114781. https://doi.org/10.1016/j.indcrop.2022.114781.
  • [39] J.Y. Zhu, X. Pan, Efficient sugar production from plant biomass: Current status, challenges, and future directions, Renew. Sustain. Energy Rev. 164 (2022) 112583. https://doi.org/10.1016/j.rser.2022.112583.
  • [40] E.K. New, S.K. Tnah, K.S. Voon, K.J. Yong, A. Procentese, K.P. Yee Shak, W. Subramonian, C.K. Cheng, T.Y. Wu, The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock, J. Environ. Manage. 307 (2022) 114385. https://doi.org/10.1016/j.jenvman.2021.114385.
  • [41] S. Dutta, Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications, Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01924-w.
  • [42] K. Świątek, S. Gaag, A. Klier, A. Kruse, J. Sauer, D. Steinbach, Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation, Catalysts. 10 (2020) 437. https://doi.org/10.3390/catal10040437.
  • [43] Y. Lu, Q. He, Q. Peng, W. Chen, Q. Cheng, G. Song, G. Fan, Directional synthesis of furfural compounds from holocellulose catalyzed by sulfamic acid, Cellulose. 28 (2021) 8343–8354. https://doi.org/10.1007/s10570-021-04070-8.
  • [44] Z. Zhang, J. Xu, J. Xie, S. Zhu, B. Wang, J. Li, K. Chen, Physicochemical transformation and enzymatic hydrolysis promotion of reed straw after pretreatment with a new deep eutectic solvent, Carbohydr. Polym. 290 (2022) 119472. https://doi.org/10.1016/j.carbpol.2022.119472.
  • [45] E.L.N. Escobar, M.J. Suota, L.P. Ramos, M.L. Corazza, Combination of green solvents for efficient sugarcane bagasse fractionation, Biomass and Bioenergy. 161 (2022) 106482. https://doi.org/10.1016/j.biombioe.2022.106482.
  • [46] K.N. Guo, C. Zhang, L.H. Xu, S.C. Sun, J.L. Wen, T.Q. Yuan, Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment, Bioresour. Technol. 354 (2022) 127225. https://doi.org/10.1016/j.biortech.2022.127225.
  • [47] L. Huang, H. Peng, Z. Xiao, H. Wu, G. Fu, Y. Wan, H. Bi, Production of furfural and 5-hydroxymethyl furfural from Camellia oleifera fruit shell in [Bmim]HSO4/H2O/1,4-dioxane biphasic medium, Ind. Crops Prod. 184 (2022) 115006. https://doi.org/10.1016/j.indcrop.2022.115006.
  • [48] L. Mesa, V.S. Valerio, M.B. Soares Forte, J.C. Santos, E. González, S.S. da Silva, Optimization of BmimCl pretreatment of sugarcane bagasse through combining multiple responses to increase sugar production. An approach of the kinetic model, Biomass Convers. Biorefinery. 12 (2022) 2027–2043. https://doi.org/10.1007/s13399-020-00792-0.
  • [49] P. Liu, S. Shi, L. Gao, G. Xiao, Efficient conversion of xylan and rice husk to furfural over immobilized imidazolium acidic ionic liquids, React. Kinet. Mech. Catal. 135 (2022) 795–810. https://doi.org/10.1007/s11144-022-02172-3.
  • [50] K.S. Khoo, X. Tan, C.W. Ooi, K.W. Chew, W.H. Leong, Y.H. Chai, S.H. Ho, P.L. Show, How does ionic liquid play a role in sustainability of biomass processing?, J. Clean. Prod. 284 (2021) 124772. https://doi.org/10.1016/j.jclepro.2020.124772.
  • [51] H. Mao, S.H. Li, A.S. Zhang, L.H. Xu, H.X. Lu, J. Lv, Z.P. Zhao, Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave, Sep. Purif. Technol. 272 (2021) 118813. https://doi.org/10.1016/j.seppur.2021.118813.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f28d7a97-0cf8-4845-8531-489e9a985738
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.