PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Application of Mineral Sorbents to Remove Volatile Organic Compounds from the Gases Emitted from the Composting Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The disposal of organic waste in processes such as composting is related to the emission of malodorous compounds. Owing to their character and low odour detection threshold, there is often a need for a hundred percent elimination of the contaminants from waste gases. One of alternative methods of treating the waste gases from malodorous contaminants, occurring in low concentrations in post-process air, is the biofiltration method. Most often, the method uses an organic filtration material. However, this method of air purification is still developing; therefore, there is a search for new sorbents among mineral materials, which would be an alternative for organic sorbents. The article presents the research into the application of aluminosilicate sorbents, including halloysite, for deodorization of the gases emitted from the processes of composting municipal waste. The semitechnical scale research was conducted for several weeks in a municipal waste composting plant, passing real gases through two biofilters filled with mineral sorbents. In spite of the fact that some problems occurred and the research cycle was not completed, the experiment proved that halloysite removes odours to a much higher extent than the other examined aluminosilicate sorbent. While the VOCs reduction on a bed with halloysite was 88%, the reduction on a bed with a second aluminosilicate reached 35%. The process conditions were very unstable; therefore, the efficiency of the VOCs removal process varied widely. However, halloysite has always been a better sorbent than the other aluminosilicate.
Rocznik
Strony
98--110
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Environmental Protection and Engineering, University of Bielsko-Biala, Poland
Bibliografia
  • 1. Aguirre A., Bernal P., Maureira D., Ramos N., Vásquez J., Urrutia H., Gentina J.C. & Aroca G. 2018. Biofiltration of trimethylamine in biotrickling filter inoculated with Aminobacteraminovorans, Electronic Journal of Biotechnology 33, 63–67.
  • 2. Ammonia: Method 6015. 1994. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, 8/15/94, Issue 2, Page 2 of 7, https://www.cdc.gov/niosh/docs/2003–154/pdfs/6015.pdf (20.03.2020)
  • 3. Beniwal D., Taylor-Edmonds L., Armour J. & Andrews R.C. 2018. Ozone/peroxide advanced oxidation in combination with biofiltration for taste and odour control and organics removal, Chemosphere, 212, 272281, https://doi.org/10.1016/j.chemosphere.2018.08.015Get rights and content.
  • 4. Bohdziewicz J., Cebula J., Mrowiec B., Piotrowski K., Prokopenko O., Sakiewicz P. & Sołtys J. 2015. Application of the halloysite-based sorbent for agricultural biogas purification and elongation of the internal combustion engine life. Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine. Series: Engineering and Energy of Agro-Industrial Complex, 209, 1, 25–31.
  • 5. Cebula J., Sakiewicz P., Piotrowski K. et al. 2015. The application of multifunctional halloysite-based sorbent halophile for treatment of complex waste gas compounds produced in selected biotechnological processes. II Konferencja Naukowo-Techniczna, Sorbenty mineralne, Surowce, Energetyka, Ochrona Środowiska, Nowoczesne Technologie, Kraków. (in Polish)
  • 6. Diethylenetriamine, Ethylenediamine, Triethylenetetramine: Method 2540. 1994. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, 8/15/94, Issue 2, Page 2 of 4, https://www.cdc.gov/niosh/docs/2003–154/pdfs/2540.pdf (20.03.2020)
  • 7. Eller P. M., Cassinelli E. M. 1994. NIOSH, Manual of Analytical Methods 4th edition, U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Physical Sciences and Engineering, Cincinnati, Ohio.
  • 8. Frederickson J., Boardman C.P., Gladding T.L., Simpson A.E., Howell G. & Sgouridis F. 2013. Evidence: Biofilter performance and operation as related to commercial composting. Environment Agency, Bristol.
  • 9. Głuszek M., Antosik A., Żurowski R. & Szafran M. 2015. Influence of the organic modifiers on properties of halloysite sorbents, Composites Theory and Practice, 15, 2.
  • 10. Hermawan A.A., Chang J.W., Pasbakhsh P., Hart F. & Talei A. 2018. Applied Clay Science, DOI: 10.1016/j.clay.2017.12.051.
  • 11. Hydrogen Sulfide: Method 6013. 1994. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, 8/15/94, Issue 1, Page 2 of 4, https://www.cdc.gov/niosh/docs/2003–154/pdfs/6013.pdf (20.03.2020)
  • 12. Jaber M.B., Couvert A., Amrane A., Rouxel F., Le Cloirec P. & Dumont E. 2016. Biofiltration of H2S in air–Experimental comparisons of original packing materials and modeling; Biochemical Engineering Journal, 112, 153–160.
  • 13. Jana S., Das S., Ghosh C., Maity A. & Pradhan M. 2015. Halloysite nanotubes capturing isotope selective atmospheric CO2, Scientific Reports, 5:8711. DOI: 10.1038/srep08711.
  • 14. Kwarciak-Kozłowska A. & Bańka B. 2014. Biofiltration as a Method of Neutralisation of Odours Produced during Composting the Biodegradable Fraction of Municipal and Industrial Waste, Inżynieria i Ochrona Środowiska, 17(4), 631–645. (in Polish)
  • 15. Kwarciak-Kozłowska A. & Bańka B. 2014. Biofiltration as a Method of Neutralisation of Odours Produced during Organic Matter Transformation Processes, Inżynieria i Ochrona Środowiska, 17(4), 625–639. (in Polish)
  • 16. Kwaśny J.& Balcerzak W. 2014. Characteristics of selected indirect methods of reducing the emission of odors; Archiwum Gospodarki Odpadamii Ochrony Środowiska; Archives of Waste Management and Environmental Protection, 16(4), 125–134.
  • 17. Makhniashvili I., Kowalska J. 2007. Lotne związki organiczne – metoda oznaczania, Podstawy i Metody Oceny Środowiska Pracy, 1(51), 141–147.
  • 18. Marada P. & Vaverková M. 2010. New Construction Solutions of Biofilters Used to Neutralise Malodorous Substances from Technological Gases, Infrastruktura i ekologia terenów wiejskich; Infrastructure and ecology of ruralareas; 8/2/2010, Polish Academy of Sciences, 127–133, Kraków. (in Polish)
  • 19. Mercaptans, Methyl-, Ethyl-, and n-Butyl-: Method 2542. (1994). NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, Issue 1, Page 2 of 4, https://www.cdc.gov/niosh/docs/2003–154/pdfs/2542.pdf (20.03.2020)
  • 20. Miller U., Sówka I., Grzelka & A., Pawnuk M. 2018. Application of biological deodorization methods in the aspect of sustainable development, SHS Web of Conferences 57, 02006 https://doi.org/10.1051/shsconf/20185702006
  • 21. Nikiema J., Girard M., Brzeziński R. & Heitz M. 2009. Biofiltration of methane using an inorganic filter bed: Influence of inlet load and nitrogen concentration, Canadian Journal of Civil Engineering, 36(12):1903–1910, 10.1139/L09–144.
  • 22. Nikiema J. & Heitz M. 2010. The use of inorganic packing materials drying methane biofiltration, Hindawi Publishing Corporation International Journal of Chemical Engineering, doi: 10.1155/2010/573149
  • 23. Opaliński S., Korczyński M., Szołtysik M., Dobrzański Z. & Kołacz R. 2015. Application of aluminosilicates for mitigation of ammonia and volatile organic compound emissions from poultry manure, Open Chem, 13, 967–973.
  • 24. Radziemska M. & Mazur Z. 2016. Content of selected heavy metals in ni-contaminated soil following the application of halloysite and zeolite, Journal of Ecological Engineering, 17(3), .
  • 25. Radziemska M. 2018. Study of applying naturally occurring mineral sorbents of Poland (dolomite, halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals, Catena 163, 123–129.
  • 26. Sołtys J., Schomburg J., Sakiewicz P. et al. 2013. Halloysite from Dunino Deposit as a Raw Material for Mineral Sorbent Production, I Konferencja Naukowo-Techniczna Sorbenty mineralne, Kraków. (in Polish)
  • 27. Sówka I., Miller U. & Sobczyński P. 2014. Emission of Odours from Municipal Waste Composting Processes, Przemysł Chemiczny, 1, 93(15), 1003–1003. (in Polish)
  • 28. Sakiewicz P., Cebula J., Piotrowski K., Nowosielski R., Wilk, R. & Nowicki M. 2015. Application of microand nanostructural multifunctional halloysite-based sorbents from DUNINO bed in selected biotechnological processes, Journal of Achievements in Materials and Manufacturing Engineering, 69, 2, 69–78.
  • 29. Wieczorek A. 2010. Biofiltration of Waste Gases Contaminated with Volatile Organic Compounds. Technical and Microbiological Aspects, Habilitationdissertation, Szczecin. (in Polish)
  • 30. Wierzbińska M. 2006. The Application of Natural Fibres For Deodoration of Waste Gases, University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, doctoral dissertation, Bielsko-Biała 2006. (in Polish)
  • 31. Wierzbińska M. 2008. Estimation of the Influence of Sorption Properties of Selected Natural Fibres on the Efficiency of Deodorisation Processes of Industrial Waste-Gases, Fibres and Textiles in Eastern Europe, 16(1), 108–112.
  • 32. Wierzbińska M. 2010a. The Application of Bioflitration Method For Deodorisation of Waste Gases with the Use of Fibrous Beds. Part 3. The Research into the Effectiveness of Odour Biofiltration with the Use of Beds Being a Mixture of Selected Materials of Natural Origin, Ochrona Powietrza i Problemy Odpadów, 3, 96–107. (in Polish)
  • 33. Wierzbińska M. 2010b. The Application of Bioflitration Method For Deodorisation of Waste Gases with the Use of Fibrous Beds. Part 4. An Analysis of the Efficiency of Biofilters Depending on the Applied Fibrous Bed and the Examination of the Filtration Material After the, Ochrona Powietrza i Problemy Odpadów, 4, 142–154. (in Polish)
  • 34. Wierzbińska M., 2014. Biofiltration of Industrial Waste Gases with the Use of Natural Fibrous Beds, online access 30.05.2014, wis.pol.lublin.pl/kongres3/tom2/29.pdf (in Polish)
  • 35. Wierzbińska M. & Modzelewski W.E. 2015. The Use of Biofilters for Deodorisation of Malodorous Gases, Ecol. Eng., 41, 125–132. (in Polish)
  • 36. Wierzbińska M. 2017. Biofilters as Structures in Enviornmental Engineering, Materiały Budowlane, 12, 27–30, Wyd. SIGMA-NOT. (in Polish)
  • 37. Wysocka I., Gębicki J. & Namieśnik J. 2019. Technologies for deodorization of malodorous gases, Environmental Science and Pollution Research, 26, 9409–9434. https://doi.org/10.1007/s11356–019–04195–1
  • 38. Xue C. & Sun X. 2018.Study on Compound Deodorization Experiment of Spray Tower – Biological Filter, 2nd International Workshop on Renewable Energy and Development (IWRED 2018); IOP Conf. Series: Earth and Environmental Science 153, 032041 doi :10.1088/1755–1315/153/3/032041.
  • 39. Yu Y., Hou J., Li M., Meng F., Xi B., Liu D. & Ye M. 2019. Selection and Optimization of Composting Packing Media for Biofiltration of Mixed Waste Odors, Waste and Biomass Valorization, https://doi.org/10.1007/s12649–019–00744–4.
  • 40. Żarczyński A., Rosiak K., Anielak P. & Wolf W. 2014. Practical methods of clearing biogas from hydrogen sulphide. Part 1. Application of solid sorbents, Acta Innovations, 12, 24–34.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f289afa2-4bf8-4b73-a34e-bf40cda4e2d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.