PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of alkaline treatment on mechanical properties of palmyra and S-glass fiber reinforced epoxy nanocomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although epoxy resins have many advantages, their use needs to be expanded by improving their mechanical properties, including a wide variety of material quality, easy processing, negligible shrinkage due to curing, and good adhesiveness to many forms of fiber materials. The research focuses cost-effective utilization of palmyra fiber treated with 5% alkali solution and different volume percentages of S-glass fiberglass incorporated by epoxy resin developed by hand layup technique. The final epoxy hybrid composite consists of different weight ratios of palmyra/S-glass fiberglass as 25:75, 50:50, and 75:25. Influences of palmyra (treated) fiber dispersion quality on density, voids, mechanical and moisture absorption performance of the epoxy hybrid composite is studied by ASTM rule. The elevated output characteristics performance is compared with untreated fiber composite. Based on the rule of mixture, composite density is varied and Archimedes’ principle measures voids. The alkali treated composite samples showed good tensile stress, flexural and impact strength. While compared to untreated fiber composite, the tensile, flexural, and compressive strength of TPF/GF(25:75) composite was improved by 19.58%, 29%, and 14.3%, respectively. The reduced water absorption behaviour was observed on the treated composites. The effect of fiber dispersion on the mechanical failure of hybrid composite is studied by SEM analysis.
Rocznik
Strony
art. no. e116, 2023
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, School of Engineering, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, Tamilnadu, India
  • Department of Mechanical Engineering, School of Engineering, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, Tamilnadu, India
autor
  • Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamilnadu, India
  • Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamilnadu, India
Bibliografia
  • 1. Singh MK, Tewari R, Zafar S, Rangappa SM, Siengchin S. A comprehensive review of various factors for application feasibility of natural fiber-reinforced polymer composites. Results Mater. 2023;17: 100355.
  • 2. Mostafa NH, Ismarrubie Z, Sapuan S, Sultan M. The influence of equibiaxially fabric 440 prestressing on the flexural performance of woven E-glass/polyester-reinforced 441 composites. J Compos Mater. 2016;50:3385-93.
  • 3. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K. Impact behaviour of hybrid composites for structural applications: a review. Compos B Eng. 2018;133:112-21.
  • 4. Andrew JJ, Dhakal HN. Sustainable biobased composites for advanced applications: recent trends and future opportunities- a critical review. Compos C Open Access. 2022;7:100220.
  • 5. Ramesh M. Kenaf (Hibiscus cannabinus L.) fiber-based biomaterials: a review on processing and properties. Prog Mater Sci. 2016;78-79:1-92.
  • 6. Kisiel M, Mossety-Leszczak B. Development in liquid crystalline epoxy resins and composites- a review. Eur Polym J. 2020;124: 109507.
  • 7. Dagdag O, Safi Z, Hsissou R, Erramli H, El Bouchti M, Wazzan N, Guo L, Verma C, Ebenso EE, El Harfi A. Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: computational and experimental studies. Sci Rep. 2019;9:11715.
  • 8. Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, et al. Epoxy thermosets and materials derived from bio-based monomeric phenols: transformations and performances. Progr Polym Sci. 2020;108:101287.
  • 9. Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang D-Y. Epoxy thermosets and materials derived from bio-based monomeric phenols: transformations and performances. Prog Polym Sci. 2020;108: 101287.
  • 10. Zhang H, Li W, Xu J, Shang S, Song Z. Synthesis and characterization of bio-based epoxy thermosets using rosin-based epoxy monomer. Iran Polymer J. 2021;30:643-54.
  • 11. Ozgul EO, Ozkul MH. Effects of epoxy, hardener, and diluent types on the hardened state properties of epoxy mortars. Constr Build Mater. 2018;187:360-70.
  • 12. Krishna KG, Divakar C, Venkatesh K, et al. Bulk temperature estimation during wear of a polymer composite pin. Wear. 2010;268:346-51.
  • 13. Hussain M, Gupta A, Kumar P, Hussain MI, Das AK. Experimental study and statistical analysis of bending titanium alloy sheet with continuous wave fiber laser. Archiv Civil Mech Eng. 2022;22:110.
  • 14. Sanjeevi S, Shanmugam V, Kumar S, Ganesan V, Sas G, Johnson DJ, Shanmugam M, Ayyanar A, Naresh K, Oisik REN. Effects of water absorption on the mechanical properties of hybrid natural fiber/phenol formaldehyde composites. Sci Rep. 2021;11:13385.
  • 15. Evans PD, Owen NL, Schmid S, Webster RD. Weathering and photostability of benzoylated wood. Polym Degrad Stab. 2002;76:291-303.
  • 16. Fartini M, Majid MA, Ridzuan M, Amin N, Gibson A. Compressive properties of Napier (Pennisetum purpureum) filled polyester composites. Plast Rubber Compos. 2016;45:136-41.
  • 17. Vasudevan A, Kumar BN, Depoures MV, Maridurai T, Mohanavel V. Tensile and flexural behaviour of glass fiber reinforced plastic-aluminium hybrid laminate manufactured by vacuum resin transfer moulding technique (VARTM). Mater Today Proc. 2021;37:2132-40.
  • 18. Raju JSN, Depoures MV, Shariff JA, Chakravarthy S. Characterization of natural cellulosic fibers from stem of Symphirema involucratum plant. J Nat Fibers. 2022;19(13):5355-70.
  • 19. Velmurugan R, Manikandan V. Mechanical properties of palmyra/glass fiber hybrid composites. Compos A Appl Sci Manuf. 2007;38(10):2216-26.
  • 20. Sherwani SFK, et al. Mechanical properties of sugar palm (Arenga innata Wurmb. Merr)/glass fiber-reinforced poly(lactic acid) hybrid composites for potential use in motorcycle components. Polymers. 2021;13:3061. https://doi.org/10.3390/polym13183061.
  • 21. Bekele AE, et al. Study of the effects of alkali treatment and fiber orientation on mechanical properties of enset/sisal polymer hybrid composite. J Compos Sci. 2023;7:37. https://doi.org/10.3390/jcs7010037.
  • 22. Kong F, et al. On the vibrations of the electrorheological sandwich disk with composite face sheets considering pre and post-yield regions. Thin-Walled Struct. 2022;179:109631. https://doi.org/10.1016/j.tws.2022.109631.
  • 23. Arshid E, et al. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng Comp. 2022;38:4051-72. https://doi.org/10.1007/s00366-021-01382-y.
  • 24. Garg A, et al. Machine learning models for predicting the compressive strength of concrete containing nano-silica. Comput Concrete. 2022;30(1):33-42. https://doi.org/10.12989/cac.2022.30.1.033.
  • 25. Djilali N, et al. Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. Steel Compos Struct. 2022;42(6):779-89. https://doi.org/10.12989/scs.2022.42.6.779.
  • 26. Huang Y, et al. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archiv Civil Mech Eng. 2021;21:139. https://doi.org/10.1007/s43452-021-00291-7.
  • 27. Zerrouki R, et al. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct Eng Mech. 2021;78(2):117-24. https://doi.org/10.12989/sem.2021.78.2.117.
  • 28. Bendenia N, et al. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput Concrete. 2020;26(3):213-26. https://doi.org/10.12989/cac.2020.26.3.213.
  • 29. Fouad F, et al. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concrete. 2020;25(6):485-95. https://doi.org/10.12989/cac.2020.25.6.485.
  • 30. Al-Furjan MSH, et al. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. 2022;38:1679-96.
  • 31. Al-Furjan MSH, et al. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng Comput. 2022;38:3725-41.
  • 32. Al-Furjan MSH, et al. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos Struct. 2021;257:113150.
  • 33. Heidari F, et al. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Compos Struct. 2021;38:533-45. https://doi.org/10.12989/scs.2021.38.5.533.
  • 34. Al-Furjan MSH, et al. Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct. 2021;228(1):111496.
  • 35. Thomason J. An overview of some scaling issues in the sample preparation and data interpretation of the micro bond test for fiber-matrix interface characterization. Polym Testing. 2022;111: 107591.
  • 36. Hasan KMF, Horvath PG, Koczan Z, Alpar T. Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-83140-0.
  • 37. Paul SA, Boudenne A, Ibos L, Candau Y, Joseph K, Thomas S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A Appl Sci Manuf. 2008;39:1582-8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2884fe8-40ba-453f-9900-17e6ed4ba7b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.