PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non‐linear model‐based predictive control for trajectory tracking and control effort minimization in a smartphone‐based quadrotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the design and implementation of a nonlinear model‐based predictive controller (NMPC) for predefined trajectory tracking and to minimize the control effort of a smartphone‐based quadrotor are developed. The optimal control actions are calculated in each iteration by means of an optimal control algorithm based on the non‐linear model of the quadrotor, considering some aerodynamic effects. Control algorithm implementation and simulation tests are executed on a smartphone using the CasADi framework. In addition, a technique for estimating the energy consumed based on control signals is presented. NMPC controller performance was compared with other works developed towards the con‐ trol of quadrotors, based on an H∞ controller and an LQI controller, and using three predefined trajectories, where the NMPC average tracking error was around 50% lower, and average estimated power and energy consumption slightly higher, with respect to the H∞ and LQI controllers.
Twórcy
autor
  • School of Electrical and Electronic Engineering, Universidad del Valle, Ciudad Universitaria Melendez, Calle 13 # 100‑00, Cali, Colombia, www: https://gici.univalle.edu.co/
  • School of Electrical and Electronic Engineering, Universidad del Valle, Ciudad Universitaria Melendez, Calle 13 # 100‑00, Cali, Colombia, www: https://gici.univalle.edu.co/
Bibliografia
  • [1] A. Banerjee and A. Roychoudhury, “Future of mobile software for smartphones and drones: Energy and performance,” pp. 1–12, 2017.
  • [2] J. A. Frank, A. Brill, J. Bae, and V. Kapila, “Exploring the role of a smartphone as a motion sensing and control device in the wireless networked control of a motor test‑bed,” in 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2015, pp. 328–335.
  • [3] C. Bodenstein, M. Tremer, J. Overhoff, and R. P. Würtz, “A smartphone‑controlled autonomous robot,” in 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015, pp. 2314–2321.
  • [4] L. Garcia, A. Astudillo, and E. Rosero, “Fast model predictive control on a smartphone‑based flight controller,” in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), 2019, pp. 1–6.
  • [5] N. Kreciglowa, K. Karydis, and V. Kumar, “Energy efficiency of trajectory generation methods for stop‑and‑go aerial robot navigation,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 656–662.
  • [6] J. Svacha, K. Mohta, and V. Kumar, “Improving quadrotor trajectory tracking by compensating for aerodynamic effects,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 860–866.
  • [7] F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain, “Trajectory optimisation for a quadrotor helicopter considering energy consumption,” in 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), 2017, pp. 1030–1035.
  • [8] Z. Wang, K. Akiyama, K. Nonaka, and K. Sekiguchi, “Experimental verification of the model predictive control with disturbance rejection for quadrotors,” in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2015, pp. 778–783.
  • [9] K. Shimada and T. Nishida, “Particle filter‑model predictive control of quadcopters,” in Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, 2014, pp. 421–424.
  • [10] R. Singhal and P. B. Sujit, “3d trajectory tracking for a quadcopter using mpc on a 3d terrain,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 1385–1390.
  • [11] A. Bemporad and C. Rocchi, “Decentralized linear time‑varying model predictive control of a formation of unmanned aerial vehicles,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 7488–7493.
  • [12] M. E. Guerrero‑Sanchez, H. Abaunza, P. Castillo, R. Lozano, and C. D. Garcı́a‑Beltrán, “Quadrotor energy‑based control laws: A unit‑quaternion approach,” Journal of Intelligent & Robotic Systems, no. 2, pp. 347–377, 2017.
  • [13] J. Cariñ o, H. Abaunza, and P. Castillo, “Quadrotor quaternion control,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 825–831.
  • [14] W. Dong, G.‑Y. Gu, X. Zhu, and H. Ding, “Modeling and control of a quadrotor uav with aerodynamic concepts,” International Journal of Aerospace and Mechanical Engineering, no. 5, pp. 901–906, 2013.
  • [15] A. Chovancová , T. Fico, L. Chovanec, and P. Hubinsk, “Mathematical modelling and parameter identification of quadrotor (a survey),” Procedia Engineering, pp. 172–181, 2014.
  • [16] T. T. Ribeiro, A. G. Conceiçao, I. Sa, and P. Corke, “Nonlinear model predictive formation control for quadcopters,” IFAC‑PapersOnLine, no. 19, pp. 39–44, 2015.
  • [17] M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control for unified trajectory optimization and tracking,” in 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016, pp. 1398–1404.
  • [18] A. Astudillo, B. Bacca, and E. Rosero, “Optimal and robust controllers design for a smartphone‑based quadrotor,” in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), 2017, pp. 1–6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2866786-d50b-4d01-a3da-48f6e7cd0c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.