Identyfikatory
Warianty tytułu
Modelling of water distribution systems in low pressure condition
Języki publikacji
Abstrakty
Doświadczenie już 26 lat pracy związanej z modelowaniem hydraulicznym systemów wodociągowych przy użyciu oprogramowania EPANET na całym świecie, w dobie informatyzacji przedsiębiorstw, doprowadziły do potrzeby coraz bardziej zaawansowanych obliczeń jakich oczekuje się od programów do modelowania. Metodyka oparta na założeniu, wedle którego wartość zapotrzebowania na wodę jest wielkością zadaną w procesie obliczeniowym parametrów hydraulicznych, tj. ciśnienie i przepływ, okazała się być niewystarczająca w czasie modelowania sieci w sytuacji obniżonego ciśnienia wywołanego np. nagłym uszkodzeniem przewodu lub awarią. Na podstawie najnowszych publikacji w referacie zaprezentowana została szczegółowo nowa metodyka oparta o zadaną wartość ciśnienia (PDD1*), która umożliwia odzwierciedlenie w/w zdarzeń. Szczególną uwagę poświęcono temu w jaki sposób można za pomocą programu EPANET oraz WaterGEMS zastosować PDD w obliczeniach symulacyjnych. Na zakończenie wymienione zostały najbardziej popularne programy, w których występuje możliwość prowadzenia symulacji PDD.
Experience of 26 years dedicated to hydraulic modelling of water distribution systems with the aid of the EPANET software, in the era of companies'computerization, have led to the development of more andmore complex calculations required by modelling programs. Methodology based on an assumption that water requirement is the set value in the calculating process of hydraulic parameters i.e. pressure and flow, has turned out to be insufficient during networks' modelling in case of sudden pressure drops caused by pipe breaks or accidents. Based on latest publications, new methodology, rooted in set pressure value (PDD) what enables a reflection of abovementioned events has been presented. Particular attention has been paid to cases where with use of EPANET and WaterGEMS, PDD could be applied in simulations. Finally, article lists most popular programs where PDD simulations can be run.
Wydawca
Czasopismo
Rocznik
Tom
Strony
201--205
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Instytut Inżynierii Środowiska, Politechnika Poznańska, ul. Berdychowo 4, 61-131 Poznań
Bibliografia
- [1] Alvisi S., Franchini M. 2006. “Near-optimal rehabilitation scheduling of water distribution systems based on a multi-objective genetic algoritm” Civil and Engineering Environmental Systems (23): 143-160.
- [2] Balut A., Brodziak R., Bylka J., Zakrzewski P. 2018. “Battle of Post-Disaster Response and Restauration (BPDRR)”. Proceedings of the 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada - July 23-25: 1-8.
- [3] Bentley Systems Incorporated. 2005. “WaterGEMS User Manual” 27 Siemon Co Dr, Suite200W, Watertown, CT06795, USA.
- [4] Bertola P., Nicolini M. 2007. “Evaluating reliability and efficiency of water distribution networks”. Edited in: Efficient Management of Water Networks. Design and Rehabilitation technique Ferrara: 7-23.
- [5] Bhave P.R. 1981. “Node flow analysis of water distribution systems”. Journal of Transportation Engineering (107): 457-467.
- [6] Chandapillai, J. 1991. “Realistic simulation of water distribution system”. Journal of Transportation Engineering (117): 258-263.
- [7] Ciaponi C., Franchioli L., Murari, E., Papiri S. 2015. ”Procedure for defining a pressure-outflow relationship regarding indoor demands in pressure-driven analysis of water distribution networks”. Water Resour. Manag (29): 817-832.
- [8] Ciaponi C., Creaco E. 2018. “Comparison of Pressure-Driven Formulations for WDN Simulation”. Water 10(4): 523.
- [9] Creaco E., Pezzinga G. 2018. “Advance in Water Distribution Networks”. Water, (10): 1-8.
- [10] Creaco E., Franchini M., Alvisi S. 2012. “Evaluating water demand short-falls in segment analysis”. Water Resources Management (26): 2301-2321.
- [11] Elhay, S., Piller, O., Deuerlein, J., Simpson, A. 2016. “A robust, rapidly convergent method that solves the water distribution equations for pressure-dependent models”. Journal of Water Resources Planning and Management (142)/2: 04015047-1-04015047-12.
- [12] Fujiwara O., Li, J. 1998. “Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressure dependent demand”. Water Resources Research (34)/7: 1843-1850.
- [13] Germanopoulos G., 1985. “A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models”. Journal of Civil Engineering Systems, (2):171-179 (published online: 20.09.2007).
- [14] Giustolisi O., Todini E. 2009. “Pipe hydraulic resistance correction in WDN analysis”. Urban Water Journal, (6)/1: 39-52.
- [15] Giustolisi O., Savic D., Kapelan Z. 2008. “Pressure-driven demand and leakage simulation for water distribution networks”. Journal of Hydraulic Engineering 134(5): 626-635.
- [16] Gorev N.B., Kodzhespirova I.F. 2013. “Noniterative implementation of pressure-dependent demands using the hydraulic analysis engine of EPA- NET 2”. Water Resources Management 27(10): 3623-3630.
- [17] Guidolin M., Burovskiy P., Kapelan Z., Savic D.A. 2010. “CWSNet: an object-oriented toolkit for water distribution system simulations”. Proceedings of the 12th Annual Water Distribution Systems Analysis Conference, WDSA 2010, September 12-15, Tuscon, Arizona USA: 1-7.
- [18] Gupta R., Bhave P.R. 1996. “Comparison of methods for predicting deficient-network performance”. Journal of Water Resources Planning and Management 122(3): 214-217.
- [19] Isaacs L.T., Mills, K.G. 1980. “Linear theory methods for pipe network analysis.” Journal of Hydraulic Division (106): 1191-1201.
- [20] Janus T., Ulanicki B. 2018. “Pressure dependency of total demand in water distribution networks”. 1 st International WDSA / CCWI 2018 Joint Conference Kingston, Ontario, Canada July 23-25, 2018, 1/(163): 1-8.
- [21] Jinesh Babu K.S., Mohan S. (2011). “Extended period simulation for pressure-deficient water distribution network”. Journal of Computing in Civil Engineering, 26(4): 498-505.
- [22] Muranhoa J., Ferreirad A., Sousac J., Gomes A., Sa Marques A. 2015. “Convergence issues in the EPANET solver”. 13th Computer Control for Water Industry Conference, CCWI 2015, Procedia Engineering (119): 700-709.
- [23] Pacchin E., Alvisi S., Franchini M. 2017. “Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET”. Water Resources Management (31): 75-91.
- [24] Pacchin E., Alvisi S., Franchini M. 2017. “A New Non-Iterative Method for Pressure-driven Snapshot Simulations with EPANET”. Procedia Engineering, (186): 135-142.
- [25] Paez D., Suribabu C.R., Filion Y. 2018. “Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands”. Water Resources Management, 32(8): 2837-2846.
- [26] Sayyed M. A., Gupta R., Tanyimboh T.T. 2014. “Modelling pressure deficient water distribution networks in EPANET”. Procedia Engineering (89): 626-631.
- [27] Siew C., Tanyimboh T.T. 2012. “Pressure-dependent EPANET extension”. J. Water Resour. Manag. (26): 1477-1498.
- [28] Sivakumar P., Prasad R.K. 2015. “Extended Period Simulation of Pressure-Deficient Networks Using Pressure Reducing Valves”. Water Resour. Manage (29): 1713-1730.
- [29] Sivakumar P., Prasad R.K. 2014. “Simulation of water distribution network under pressure deficient condition”. Water resources management, 28(10): 3271-3290.
- [30] Tanyimboh T., Templeman A. 2010. “Seamless pressure-deficient water distribution system model”. J. Water Manag. (163): 389-396.
- [31] Todini E., Pilati S. 1988. “A Gradient Algorithm for the Analysis of Pipe Networks”. Wiley: London, UK.: 1-20.
- [32] Tucciarelli T., Criminisi A., Termini D. 1999. “Leak Analysis in Pipeline Sys-tem by Means of Optimal Value Regulation”. J. Hydraul. Eng. (125): 277-285.
- [33] Urbaniak A., Bałut A. 2013. “Model sieci jako narzędzie ochrony systemu zaopatrzenia w wodę”. Gaz, woda i technika sanitarna, (9): 359-363.
- [34] Wagner B.J.M., Shamir, U., Marks, D.H. 1988. “Water distribution reliability: Simulation method”. J. Water Resources Plannning and Management (114): 276-294.
- [35] Walski T., Blakley D., Matthew E., Whitman B. 2017. “Verifying pressure dependent demand modeling”. XVIII International Conference on Water Distribution Systems Analysis, WDSA2016 (186): 364-371.
- [36] Walski T., Havard M., Yankelitis B., Youells J., Brian Whitman. 2018. “Testing Pressure Dependent Demand at Low Pressure”. In Proceedings of 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada - July 23-25, 2018: 1-8.
- [37] Wood D.J., Charles O.A. 1970. “Hydraulic network analysis using linear theory”. J. Hydraul. Division, (96): 1221-1234.
- [38] Wu Z.Y., Wang R.H., Walski T.M., Yang S.Y., Bowdler D., Baggett C.C. 2009. “Extended global-gradient algorithm for pressure-dependent water distribution analysis”. Journal of Water Resources Planning and Management (135/1): 13-22.
- [39] Wu Z.Y., Walski T. 2006. “Pressure dependent hydraulic modelling for water distribution systems under abnormal conditions”. In Proceedings of the IWA World Water Congress and Exhibition, Beijing, China, 10-14 September 2006: 1-11.
- [40] Van Zyl J.E, Borthwick J., Hardy A. 2003. “Ooten: an object-oriented programmers toolkit for Epanet”. Advances in water supply management (CCWI 2003), supplementary paper: 1-8.
- [A] https://wntr.readthedocs.io/en/latest/hydraulics.html
- [B] https://www.queensu.ca/wdsa-ccwi2018/problem-description-and-files
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f285f619-5741-4d25-9fe0-9dfa8921c673