PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of cobalt ions from diluted solutions by means of protonated dry alginate beads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining effluents contain cobalt ions that can damage humans and flora. However, this meta also has high commercial value when recovered. The objective of this research work was to recover cobalt (Co2+) from diluted solutions using a biosorbent, specifically protonated dry alginate beads (PDAB). Experimental work was carried out in batch from an initial concentration of 22×10-6 kg dm-3 Co2+ and 80 mg alginate. Variables such as agitation, pH solution, experimental time, isotherm values, and temperature were analyzed. Maximum cobalt recoveries were obtained at pH values above 5.0, reaching 60.6×10-3 kg kg-1 of PDAB. Cobalt recovery occurred with ion exchange mechanisms from alginate carboxyl group proton release. Experimental data had excellent fit with both the Lagergren kinetic model (pseudo-first order) and the Langmuir isotherm model. As temperature increased, cobalt recovery increased. The calculated activation energy was 12.8 kJ mol-1. Compositional measurements obtained by scanning electron microscope and energy-dispersive X-ray spectroscopy for alginate crosssections showed uniform distributions of cobalt concentrations throughout the spherical alginate structure, independent of solution pH, contact time, or temperature. Furthermore, elution gave significant cobalt re-extraction (98.2%) and demonstrated PDAB reusability.
Rocznik
Strony
1286--1297
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wz.
Twórcy
  • Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2162, Cod. Postal 2362854, Valparaíso, Chile
  • Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2162, Cod. Postal 2362854, Valparaíso, Chile
autor
  • Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Casilla 160-C, Concepción, Chile
Bibliografia
  • ARACENA, A., GUAJARDO, N., IBÁÑEZ, J.P., JEREZ, O., CARLESI, C., 2015. Uptake of nickel ions from aqueous solutions using protonated dry alginate beads. Can. Metall. Q. 54, 58–65.
  • ARACENA, A., ÁLVAREZ, C., JEREZ, O., GUAJARDO, N., 2019. Uptake of copper ion using protonated dry alginate beads from dilute aqueous solutions. Physicochem. Probl. Miner. Process. 55, 732-744.
  • ARAKAKI, L.N.H., FILHA, V.L.S.A., GERMANO, A.F.S., SANTOS, S.S.G., FONSECA, M.G., SOUSA, K.S., ESPÍNOLA, J.G.P., ARAKAKI, T., 2013. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution. Thermochim. Acta 556, 34–40.
  • COLEMAN, N.J., BRASSINGTON, D.S., RAZA, A., MENDHAM, A.P., 2006. Sorption of Co2+ and Sr2+ by wastederived 11 Å tobermorite. Waste Manag. 26, 260–267.
  • EBNER, A.D., RITTER, J.A., NAVRATIL, J.D., 2001. Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a Magnetite−Silica Composite. Ind. Eng. Chem. Res. 40, 1615–1623.
  • FENG, D., ALDRICH, C., TAN, H., 2000. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner. Eng. 13, 623–642.
  • FOUREST, E., VOLESKY, B., 1996. Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans. Environ. Sci. Technol. 30, 277–282.
  • GÜLER, E., SEYRANKAYA, A., 2016. Precipitation of impurity ions from zinc leach solutions with high iron contents – A special emphasis on cobalt precipitation. Hydrometallurgy 164, 118–124.
  • HACHEMAOUI, A., BELHAMEL, K., 2017. Simultaneous extraction and separation of cobalt and nickel from chloride solution through emulsion liquid membrane using Cyanex 301 as extractant. Int. J. Miner. Process. 161, 7–12.
  • HO, Y.S., MCKAY, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742.
  • HUANG, J.D., TAN, M.X., XU, J.L., LUO, J.Z., LIU, J.Z., ZHANG, R.Z., LIU, J., 2019. Gel-assisted synthesis of Cu-Co- S nanosheets forlithium-ion batteries. Applied Surface Science 488, 537-545
  • IBÁÑEZ, J.P., ARACENA, A., 2014. Uptake of Zn2+ from dilute aqueous solutions using protonated dry alginate beads. Can. Metall. Q. 53, 82–87.
  • IBÁÑEZ, J.P., UMETSU, Y., 2004. Uptake of trivalent chromium from aqueous solutions using protonated dry alginate beads. Hydrometallurgy 72, 327–334.
  • IBÁÑEZ, J.P., UMETSU, Y., 2002. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy 64, 89–99.
  • IBÁÑEZ, J.P., UMETSU, U., 2008. Uptake of cd2+ from Aqueous Solutions Using Protonated Dry Alginate Beads. Can. Metall. Q. 47, 45–50.
  • JIANG, J.L., MA, C., MA, T.F., ZHU, J.J., LIU, J.H., YANG, G., YANG, Y., 2019. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries. Journal of Alloys and Compounds 794, 385-395.
  • KYZAS, G.Z., DELIYANNI, E.A., MATIS, K.A., 2016. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 490, 74–83.
  • LEYSSENS, L., VINCK, B., VAN DER STRAETEN, C., WUYTS, F., MAES, L., 2017. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 387, 43–56. https://doi.org/10.1016/J.TOX.2017.05.015
  • MONIER, M., AYAD, D.M., WEI, Y., SARHAN, A.A., 2010. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J. Hazard. Mater. 177, 962–970.
  • OLIVEIRA, A.M.B.M., COELHO, L.F.O., GOMES, S.S.S., COSTA, I.F., FONSECA, M.G., DE SOUSA, K.S., ESPÍNOLA, J.G.P., DA SILVA FILHO, E.C., 2013. Brazilian Palygorskite as Adsorbent for Metal Ions from Aqueous Solution—Kinetic and Equilibrium Studies. Water, Air, Soil Pollut. 224, 1687.
  • PARK, Y., LEE, Y.-C., SHIN, W.S., CHOI, S.-J., 2010. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem. Eng. J. 162, 685–695.
  • QUI, S.H., WU, D.X., DONG, Y., LIAO, J.Q. FOSTER, C.W., O’DWYER, C., FENG, Y.Z., LIU, C.T., MA, J.M., 2019. Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal 370, 185-207.
  • RODRIGUES, N.F.M., SANTANA, S.A.A., BEZERRA, C.W.B., SILVA, H.A.S., MELO, J.C.P., VIEIRA, A.P., AIROLDI, C., SILVA FILHO, E.C., 2013. New Chemical Organic Anhydride Immobilization Process Used on Banana Pseudostems: A Biopolymer for Cation Removal. Ind. Eng. Chem. Res. 52, 11007–11015.
  • SILVA FILHO, E.C., SANTOS JÚNIOR, L.S., SILVA, M.M.F., FONSECA, M.G., SANTANA, S.A.A., AIROLDI, C., 2013. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution. Mater. Res.
  • SMIČIKLAS, I., DIMOVIĆ, S., PLEĆAŠ, I., 2007. Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl. Clay Sci. 35, 139–144.
  • SÜRÜCÜ, A., EYÜPOGLU, V., TUTKUN, O., 2010. Selective separation of cobalt and nickel by supported liquid membranes. Desalination 250, 1155–1156.
  • WANG, G.X., CHEN, Y., KONSTANTINOV, K., LINDSAY, M., LIU, H.K., DOU, S.X., 2002. Investigation of cobalt oxides as anode materials for Li-ion batteries. Journal of Power Sources 109, 142-147.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f284f2d7-c6a8-4c8c-938a-c79ad9df32dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.