PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on low-emission vehicle powered by LPG using innovative hardware and software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
LPG is a cheap and ecological fuel for spark ignition engines. The sequential gas injection system can be installed at the factory and is then the Original Equipment of the Manufacturer. A vehicle with a spark ignition engine can also be converted to gas in an authorized workshop. In both cases, the vehicle must meet the same exhaust emission standards when running on alternative fuel as it does with the original fuel. Conversion of vehicles to LPG and CNG is regulated by law at the European Union level. The article describes the conversion of a low-emission gasoline vehicle that meets the Euro 6 emission standard to LPG. The configuration and calibration of the LPG system is described in detail. The compatibility of the gas system with the vehicle's on-board diagnostic system was then checked. Finally, road tests of the vehicle were carried out to compare the performance with the original fuel and the alternative fuel.
Rocznik
Strony
19--36
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
  • University of Economics and Innovation in Lublin, Department of Transportation and Informatics, ul. Projektowa 4, 20-209 Lublin, Poland
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • University of Zilina, Faculty of Operation and Economics of Transport and Communications, Univerzitna 8215/1, 010 26 Zilina, Slovakia
Bibliografia
  • [1] Armas O., Gómez A., Ramos A.: Comparative study of pollutant emissions from engine starting with animal fat biodiesel and GTL fuels. Fuel. 2013, 113, 560–570, DOI: 10.1016/j.fuel.2013.06.010.
  • [2] Barta D., Mruzek M.: Non-conventional drive and its possibilities of using in road vehicles of public transport. OPT-i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings, 2014, 2049–2061.
  • [3] Datta A., Mandal B.: A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable and Sustainable Energy Reviews. 2016, 57, 799–821, DOI: 10.1016/j.rser.2015.12.170.
  • [4] Dobrowolski D., Droździel P., Madlenak R., Siluch D., Rybicka I.: Daily kilometrage analysis for selected vehicle groups. Advances in Science and Technology-Research Journal. 2018, 12, 3, 39-46, DOI:10.12913/22998624/92109.
  • [5] Droździel P., Winska M., Madlenak R., Szumski P.: Optimization of the post logistics network and location of the local distribution center in selected area of the Lublin province. 12th International Scientific Conference of Young Scientists on Sustainable, Modern and Safe Transport. Edited by: Bujnak J., Guagliano M. Procedia Engineering. 2017, 192, 130–135, DOI: 10.1016/j.proeng.2017.06.023.
  • [6] Elnajjar E., Hamdan M.O., Selim M.Y.E.: Experimental investigation of dual engine performance using variable LPG composition fuel. Renewable Energy. 2013, 56, 110–116, DOI: https://doi.org/10.1016/j.renene.2012.09.048.
  • [7] Felkiewicz M., Kubica G.: The influence of selected gaseous fuels on the combustion process in the SI engine. Transport Problems. 2017, 12, 3, 135–146, DOI: 10.20858/tp.2017.12.3.13.
  • [8] Fontaras G., Valverde V., Arcidiacono V., Tsiakmakis S., Anagnostopoulos K., Komnos D., et al.: The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process. Applied Energy. 2018, 226, 784–796, DOI: https://doi.org/10.1016/j.apenergy.2018.06.009.
  • [9] Friedl H., Fraidl G., Kapus P.: Highest efficiency and ultra-low emission – internal combustion engine 4.0. Combustion Engines. 2020, 180(1), 8–16, DOI: 10.19206/CE-2020-102.
  • [10] Gardyński L., Kałdonek J.: Research on lubrication properties of selected raw plant and animal materials. Transport. 2020, 35, 20–25, DOI: 10.3846/transport.2020.11961.
  • [11] Geller D.P., Goodrum J.W.: Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel. 2004, 83, 2351–2356, DOI: 10.1016/j.fuel.2004.06.004.
  • [12] Giakoumis E.G., Zachiotis A.T.: Investigation of a Diesel-Engine Vehicle’s Performance and Emissions during the WLTC Driving Cycle — Comparison with the NEDC. Energies. 2017, 10(2), 240, DOI: 10.3390/en10020240.
  • [13] Górska M., Bukrejewski P., Stobiecki J.: Selected physicochemical properties of water-fuel microemulsion as an alternative fuel for diesel engine. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019,84(2), 45–56, DOI: 10.14669/AM.VOL84.ART4.
  • [14] Grzelak P., Żółtowski A.: Environmental assessment of the exploitation of diesel engines powered by biofuels. Combustion Engines. 2020, 180(1), 31–35, DOI: 10.19206/CE-2020-105.
  • [15] Hlatka M., Bartuska L.: Comparing the Calculations of Energy Consumption and Greenhouse Gases Emissions of Passenger Transport Service. Nase More. 2018,‏ 65(4),‏ 224–229, DOI: 10.17818/NM/2018/4SI.11.
  • [16] Hunicz J., Matijošius J., Rimkus A., Kilikevičius A., Kordos P., Mikulski M.: Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel. 2020, 268, 117350, DOI: 10.1016/j.fuel.2020.117350.
  • [17] Jakliński P., Czarnigowski J., Wendeker M.: The effect of injection start angle of vaporized LPG on SI engine operation parameters. SAE Technical Paper. 2007, DOI: 10.4271/2007-01-2054.
  • [18] Jaworski A., Lejda K., Lubas J., Mądziel M.: Comparison of exhaust emission from Euro 3 and Euro 6 motor vehicles fueled with petrol and LPG based on real driving conditions. Combustion Engines. 2019, 178(3), 106–111, DOI: 10.19206/CE-2019-318.
  • [19] Juknelevicius R., Rimkus A., Pukalskas S., Matijosius J.: Research of performance and emission indicators of the compression-ignition engine powered by hydrogen - Diesel mixtures. International Journal of Hydrogen Energy. 2019, 44(20), 10129–10138, DOI: 10.1016/j.ijhydene.2018.11.185.
  • [20] Khan T., Frey H.C.: Comparison of real-world and certification emission rates for light duty gasoline vehicles. Science of The Total Environment. 2018, 622–623, 790-800, DOI: 10.1016/j.scitotenv.2017.10.286.
  • [21] Koszałka G., Szczotka A., Suchecki A.: Comparison of fuel consumption and exhaust emissions in WLTP and NEDC procedures. Combustion Engines. 2019, 179(4), 186–191, DOI: 10.19206/CE-2019-431.
  • [22] Kumar Pathak S., Sood V., Singh Y., Channiwala S.A.: Real world vehicle emissions: Their correlation with driving parameters. Transportation Research Part D: Transport and Environment. 2016, 44, 157–176, DOI: 10.1016/j. trd.2016.02.001.
  • [23] Kurtyka K., Pielecha J.: Cold start emissions from gasoline engine in RDE tests at different ambient temperatures. Combustion Engines. 2020, 181(2), 24–30, DOI: 10.19206/CE-2020-204.
  • [24] Kwon S., Park Y., Park J., Kim J., Choi K.H., Cha J.S.: Characteristics of on-road NOx emissions from Euro 6 lightduty diesel vehicles using a portable emissions measurement system. Science of The Total Environment. 2017, 576, 70-77, DOI: 10.1016/j.scitotenv.2016.10.101.
  • [25] Lasocki J., Kopczyński A., Krawczyk P., Roszczyk P.: Empirical study on the efficiency of an lpg-supplied range extender for electric vehicles. Energies. 2019, 12, 3528, DOI: 10.3390/en12183528.
  • [26] Małek A., Caban J., Wojciechowski Ł.: Charging electric cars as a way to increase the use of energy produced from RES. Open Engineering. 2020, 10(1), 98–104, DOI: 10.1515/eng-2020-0009.
  • [27] Mickevicius T., Slavinskas S., Wierzbicki S., Duda K.: The effect of diesel-biodiesel blends on the performance and exhaust emissions of a direct injection off-road diesel engine. Transport. 2014, 29(4), 440–448, DOI:10.3846/16484142.2014.984331.
  • [28] Mikulski M., Wierzbicki S., Pietak A.: Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine. Chemical and Process Engineering-Inzynieria Chemiczna i Procesowa, 2015, 36(2), 225–238, DOI: 10.1515/cpe-2015-0015.
  • [29] Misztal W.: The impact of perturbation mechanisms on the operation of the swap heuristic. The Archives of Automotive Engineering. 2019, 86(4), 27–39, DOI: 10.14669/AM.VOL86.ART2.
  • [30] Morra E.P., Ellinger R., Jones S., Huss A., Albrecht R.: Tank-To-Wheel CO2 Emissions Of Future C-Segment Vehicles. Der Antrieb von morgen 2014. Proceedings. Springer Vieweg, Wiesbaden. DOI: 10.1007/978-3-658-23785-1_8.
  • [31] O'Driscoll R., ApSimon H.M., Oxley T., Molden N., Stettler M.E.J., Thiyagarajah A.: A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmospheric Environment. 2016, 145, 81–91, DOI: 10.1016/j.atmosenv.2016.09.021.
  • [32] O'Driscoll R., Stettler M.E.J., Molden N., Oxley T., ApSimon H.M.: Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Science of The Total Environment. 2018, 621, 282–290, DOI: 10.1016/j.scitotenv.2017.11.271.
  • [33] Osipowicz T., Abramek K.F., Barta D., Drozdziel P., Lisowski M.: Analysis of possibilities to improve environmental operating parameters of modern compression - ignition engines. Advances in Science and Technology-Research Journal. 2018, 12(2), 206–213, DOI: 10.12913/22998624/91892.
  • [34] Park C., Kim T., Cho G., Lee J.: Combustion and emission characteristics according to the fuel injection ratio of an ultra-lean LPG direct injection engine. Energies. 2016, 9, 920, DOI: 10.3390/en9110920.
  • [35] Pavlovic J., Ciuffo B., Georgios F., Valverde V., Marotta A.: How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transportation Research Part A Policy and Practice. 2018, 111(C), 136–147, DOI: 10.1016/j.tra.2018.02.002.
  • [36] Pavlovic J., Marotta A., Ciuffo B.: CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy. 2016, 177, 661-670, DOI: https://doi.org/10.1016/j.apenergy.2016.05.110.
  • [37] Pitanuwat S., Aoki H., Iizuka S., Morikawa T.: Development of hybrid-vehicle energy-consumption model for transportation applications—Part I: Driving-power equation development and coefficient calibration. Energies. 2020, 13, 476, DOI: 10.3390/en13020476.
  • [38] Regulation No 115 of the Economic Commission for Europe of the United Nations. Supplement 6 to the original version of the Regulation — Date of entry into force: 10 June 2014.
  • [39] Rimkus A., Zaglinskis, J., Stravinskas, S., Rapalis, P., Matijosius, J., Bereczky, A.: Research on the combustion, energy and emission parameters of various concentration blends of hydrotreated vegetable oil biofuel and diesel fuel in a compression-ignition engine. Energies. 2019, 12(15), 2978, DOI: 10.3390/en12152978.
  • [40] Rodzeń A., Stoma M., Kuranc A.: Examination of vehicle exhaust gas analyzers in the context of the quality of periodic vehicle technical tests. Przemysł Chemiczny. 2018, 5, DOI: 10.15199/62.2018.5.22.
  • [41] Rybicka I., Stopka O., L'upták V., Chovancová M., Droździel P.: Application of the methodology related to the emission standard to specific railway line in comparison with parallel road transport: A case study. MATEC Web of Conferences. 2018, 244, 03002, DOI: 10.1051/matecconf/201824403002.
  • [42] Šarkan B., Kuranc A., Kučera L.: Calculations of exhaust emissions produced by vehicle with petrol engine in urban area. IOP Conference Series: Materials Science and Engineering. 2019, 710, 1, DOI:10.1088/1757-899X/710/1/012023.
  • [43] Skrúcaný T., Semanová Š., Kendra M., Figlus T., Vrabel J.: Measuring mechanical resistances of a heavy good vehicle by coast down test. Advances in Science and Technology-Research Journal. 2018, 12(2), 214–221,DOI: 10.12913/22998624/91889.
  • [44] Sakthivel P., Subramanian K.A., Mathai R.: Comparative studies on combustion, performance and emission characteristics of a two-wheeler with gasoline and 30% ethanol-gasoline blend using chassis dynamometer. Applied Thermal Engineering. 2019, 146, 726–737, DOI: 10.1016/j.applthermaleng.2018.10.035.
  • [45] Skrucany T., Kendra M., Stopka O., Milojevic S., Figlus T., Csiszar C.: Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries. Sustainability. 2019,11(18), 4948, DOI: 10.3390/su11184948.
  • [46] Stopka O., Stopkova M., Kampf R.: Application of the operational research method to determine the optimum transport collection cycle of municipal waste in a predesignated urban area. Sustainability. 2019, 11(8), 2275, DOI: 10.3390/su11082275.
  • [47] Suarez-Bertoa R., Valverde V., Clairotte M., Pavlovic J., Giechaskiel B., Franco V. et al.: On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environmental Research. 2019, 176, DOI: 10.1016/j.envres.2019.108572.
  • [48] Sulaiman M.Y., Ayob M.R., Meran I.: Performance of Single Cylinder Spark Ignition Engine Fueled by LPG. Procedia Engineering. 2013, 53, 579–585, DOI: 10.1016/j.proeng.2013.02.074.
  • [49] Synák F., Čulík K., Rievaj V., Gaňa J.: Liquefied petroleum gas as an alternative fuel. Transportation Research Procedia, 2019, 40, 527–534, DOI: 10.1016/j.trpro.2019.07.076.
  • [50] Szpica D., Kusznier M.: Modelling of Low-Pressure Gas injector operation. Acta Mechanica et Automatica. 2020, 14(1), 29–35, DOI: 10.2478/ama-2020-0005.
  • [51] Tira H., Herreros J., Tsolakis A., Wyszynski M.: Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels. Energy. 2012, 47(1), 620–629, DOI: 10.1016/j.energy.2012.09.046.
  • [52] Triantafyllopoulos G., Dimaratos A., Ntziachristos L., Bernard Y., Dornoff J., Samaras Z.: A study on the CO2 and NOx emissions performance of Euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions. Science of The Total Environment. 2019, 666, 337-–346, DOI: 10.1016/j.scitotenv.2019.02.144.
  • [53] Valverde-Morales V.: Overview of the light-duty vehicles tailpipe emissions regulations in the European Union: status and upcoming type-approval and market surveillance schema. Combustion Engines. 2020, 180(1), 3–7, DOI: 10.19206/CE-2020-101.
  • [54] Wasiak A., Orynycz O.: The effects of energy contributions into subsidiary processes on energetic efficiency of biomass plantation supplying biofuel production system. Agriculture and Agricultural Science Procedia. 2015, 7, 292–300, DOI: 10.1016/j.aaspro.2015.12.050.
  • [55] Wendeker M., Pietrykowski K., Jakliński P., Czarnigowski J., Sochaczewski R.: The simulation research of the induction process of a fourcylinder spark ignition engine fuelled by LPG sequential injection. Combustion Engines. 2009, 48, 136–144.
  • [56] Wierzbicki S.: Evaluation of the effectiveness of on-board diagnostic systems in controlling exhaust gas emissions from motor vehicles. Diagnostyka. 2019, 20(4), 75–79, DOI: 10.29354/diag/114834.
  • [57] Yinhui W., Rong Z., Yanhong Q., Jianfei P., Mengren L., Jianrong L., Yusheng L., Min H., Shijin S.: The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel. 2016, 166, 543–552, DOI: 10.1016/j.fuel.2015.11.019.
  • [58] Zdziennicka A., Szymczyk K., Janczuk B., Longwic R., Sander P.: Surface, volumetric, and wetting properties of oleic, linoleic, and linolenic acids with regards to application of Canola Oil in Diesel Engines. Applied Sciences. 2019, 9(17), 3445, DOI: 10.3390/app9173445.
  • [59] Zöldy M., Török Á.: Road Transport Liquid Fuel Today and Tomorrow: Literature Overview. Periodica Polytechnica Transportation Engineering. 2015, 43, 172–176, DOI: 10.3311/PPtr.8095.
  • [60] https://play.google.com/store/apps/details?id=org.prowl.torque&hl=pl (access 2019.10.17)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2833e4d-112f-4fae-a9d4-d8ba3264d0be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.