PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overlying sand-inrushing mechanism and associated control technology for longwall mining in shallow buried coal seams with the soft surrounding rock

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Taking the sand-inrushing accident of the Selian No. 1 coal mine in the Ordos of inner Mongolia as the research background, four main factors of sand-inrushing, including sand source, channel, sand-breaking power, and flowing space, were analysed. The disaster formation process (SCPS) illustrated that sand-inrushing disasters in shallowly buried coal seams with soft surrounding rock have the characteristics of being significantly influenced by mining, the development of vertical overburden channels, and sufficient space for water-sand mixed particles to flow. Universal Distinct Element Code (UDEC) software has been used to reveal that the vertical cracks in the overburden between the coal wall and support undergo a process of development and expansion along with the cumulative stress of mining. This showed that the vertical fissure through the overburden is the main pathway for the disaster. Combined with the site conditions, disaster occurrence mechanism, and numerical simulation results, a comprehensive prevention and control technology based on the working face and roadway grouting to block the channel was proposed. It contains reasonable mining height and optimisation of advancing speed, so that safe and efficient mining of coal seams in shallow-buried soft surrounding rocks could be achieved.
Rocznik
Strony
681--697
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • China University of Mining and Technology, China
  • China University of Mining and Technology, China
autor
  • China University of Mining and Technology, Beijing, China
  • China University of Mining and Technology, China
autor
  • China University of Mining and Technology, Beijing, China
Bibliografia
  • [1] Q.X. Huang, Ground pressure behavior and definition of shallow seams. Chinese Journal of Rock Mechanics and Engineering 21 (8), 1174-1177 (2002). DOI: https://doi.org/10.3321/j.issn:1000-6915.2002.08.014.
  • [2] W.G. Du, J. Chai, D.D. Zhang, W.L. Lei, The study of water-resistant key strata stability detected by optic fiber sensing in shallow-buried coal seam. International Journal of Rock Mechanics and Mining Sciences 141 (6), 1-9 (2021). DOI: https://doi.org/10.1016/j.ijrmms.2020.104604.
  • [3] A. Kowalski, J. Białek, T. Rutkowski, Caulking of goafs formed by cave-in mining and its impact on surface subsidence in hard coal mines. Archives of Mining Sciences 66 (1), 85-100 (2021). DOI: https://doi.org/10.24425/ams.2021.136694.
  • [4] Y. Jiang, R. Misa, K. Tajduś, A. Sroka, Y. Jiang, A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Archives of Mining Sciences 65 (1), 147-158 (2020). DOI: https://doi.org/10.24425/ams.2020.132712.
  • [5] W.F. Yang, L. Jin, X.Q. Zang, Simulation test on mixed water and sand inrush disaster induced by mining under the thin bedrock. Journal of Loss Prevention in the Process Industries 57, 1-6 (2018). DOI: https://doi.org/10.1016/j.jlp.2018.11.007.
  • [6] W.H. Sui, G.T. Cai, Q.H. Dong, Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers. Chinese Journal of Rock Mechanics and Engineering 26 (10), 2084-2091 (2007). DOI: https://doi.org/10.3321/j.issn:1000-6915.2007.10.018.
  • [7] Z.L. Yang, X.Y. Yu, H.M. Guo, Study on catastrophe mechanism for roof strata in shallow seam longwall mining. Chinese Journal of Geotechnical Engineering 29 (12), 1763-1766 (2007). DOI: https://doi.org/10.1016/S1872-2067(07)60020-5.
  • [8] Y. Chen, G.Y. Zhao, S.F. Wang, A case study on the height of a water-flow fracture zone above undersea mining: sanshandao gold Mine, China. Environmental Erath Sciences 78 (4), 122-132 (2019). DOI: https://doi.org/10.1007/s12665-019-8121-7.
  • [9] W.Q. Zhang, Z.Y. Wang, X.X. Zhu, A risk assessment of a water-sand inrush during coal mining under a loose aquifer based on a factor analysis and the fisher model. Journal of Hydrologic Engineering 25 (8), 1-12 (2021). DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001936.
  • [10] J. Wu, C. Jia, L.W. Zhang, Expansion of water inrush channel by water erosion and seepage force. International Journal of Geomechanics 21 (7), 1-12 (2021). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001985.
  • [11] F.T. Wang, S.H. Tu, C. Zhang, Evolution mechanism of water-flowing zones and control technology for longwall mining in shallow coal seams beneath gully topography. Environmental Earth Sciences 75 (19), 1-16 (2016). DOI: https://doi.org/10.1007/s12665-016-6121-4.
  • [12] X.G. Lian, H.F. Hu, T, Li, D.S. Hu. Main geological and mining factors affecting ground cracks induced by underground coal mining in Shanxi Province, China. Int. J. Coal Sci. Technol. 7 (2), 362-370 (2020). DOI: https://doi.org/10.1007/s40789-020-00308-1.
  • [13] L. Li, F.M. Li, Y. Zhang, D.M. Yang, X. Liu. Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining. Int. J. Coal Sci. Technol. 7 (1), 208-215. (2020). DOI: https://doi.org/10.1007/s40789-020-00300-9.
  • [14] X. Yang, Y.J. Liu, M. Xue, Experimental investigation of water-sand mixed fluid initiation and migration in porous skeleton during water and sand inrush. Geofluids 2020 (12), 1-18 (2020). DOI: https://doi.org/10.1155/2020/8679861.
  • [15] J. Xu, H. Pu, J. Chen, Experimental study on sand inrush hazard of water-sand two-phase flow in broken rock mass. Geofluids 2021 (3), 1-9 (2021). DOI: https://doi.org/10.1155/2021/5542440.
  • [16] Z. Yu, S. Zhu, Y. Guan, Feasibility of modifying coal pillars to prevent sand flow under a thick loose layer of sediment and thin bedrock. Mine Water and the Environment 38 (4), 817-826 (2019). DOI: https://doi.org/10.1007/s10230-019-00622-4.
  • [17] C. Zhang, Y. Zhao, P. Han, Q. Bai. Coal pillar failure analysis and instability evaluation methods: A short review and prospect. Engineering Failure Analysis 138, 106344 (2022). DOI: https://doi.org/10.1016/j.engfailanal 106344.
  • [18] J.L. Shao, Q. Zhang, X.T. Wu, Investigation on the water flow evolution in a filled fracture under seepage-induced erosion. Water 12 (11), 1-18 (2020). DOI: https://doi.org/10.3390/w12113188.
  • [19] Y.C. Wang, F. Geng, S.Q. Yang, Numerical simulation of particle migration from crushed sandstones during groundwater inrush. Journal of Hazardous Materials 362 (15), 327-335 (2019). DOI: https://doi.org/10.1016/j.jhazmat.2018.09.011.
  • [20] G.B. Zhang, W.Q. Zhang, H.L. Wang, Research on arch model and numerical simulation of critical water and sand inrush in coal mine near unconsolidated layers. Geofluids 2020 (8), 1-12 (2020). DOI: https://doi.org/10.1155/2020/6644849.
  • [21] X. He, Y.X. Zhao, C. Zhang, P.H. Han, A model to estimate the height of the water-conducting fracture zone for longwall panels in western China. Mine Water and the Environment 39 (4), 1-16 (2020). DOI: https://doi.org/10.1007/s10230-020-00726-2.
  • [22] B.Y. Zhang, Q.Y. He, Z.B. Lin, Z.H. Li, Experimental study on the flow behaviour of water-sand mixtures in fractured rock specimens. International Journal of Mining Science and Technology 31 (3), 377-385 (2021). DOI: https://doi.org/10.1016/j.ijmst.2020.09.001.
  • [23] C. Zhang, Y. Zhao, Q. Bai. 3D DEM method for compaction and breakage characteristics simulation of broken rock mass in goaf. Acta Geotechnica 1-17, (2022). DOI: https://doi.org/10.1007/s11440-021-01379-3.
  • [24] B. Chen, S.C. Zhang, Y.Y. Li, J.P. Li, Experimental study on water and sand inrush of mining cracks in loose layers with different clay contents. Bulletin of Engineering Geology and the Environment 80 (1), 663-678 (2021). DOI: https://doi.org/10.1007/s10064-020-01941-5.
  • [25] Q. Liu, B. Liu, Experiment study of the failure mechanism and evolution characteristics of water-sand inrush geo-hazard. Applied Sciences 10 (10), 1-18 (2020). DOI: https://doi.org/10.3390/app10103374.
  • [26] G.M. Zhang, K. Zhang, L.J. Wang, Y. Wu, Mechanism of water inrush and quicksand movement induced by a borehole and measures for prevention and remediation. Bulletin of Engineering Geology and the Environment 74 (4), 1395-1405 (2015). DOI: https://doi.org/10.1007/s10064-014-0714-5.
  • [27] L. Shi, Numerical simulation study on law of water and sand inrush in working face under condition of weakly cemented stratum. Coal Science and Technology 48 (07), 347-353 (2020). DOI: https://doi.org/10.13199/j.cnki.cst.2020.07.039.
  • [28] Q.D. Zeng, J. Yao, J. Shao. Numerical study of hydraulic fracture propagation accounting for rock anisotropy. Journal of Petroleum Science & Engineering 160, 422-432 (2018). DOI: https://doi.org/10.1016/j.petrol.2017.10.037.
  • [29] D.P. Do, N.H. Tran, D. Hoxha, H.L. Dang, Assessment of the influence of hydraulic and mechanical anisotropy on the fracture initiation pressure in permeable rocks using a complex potential approach [J]. International Journal of Rock Mechanics & Mining Sciences 100, 108-123 (2017). DOI: https://doi.org/10.1016/j.ijrmms.2017.10.020.
  • [30] L.J. Dong, Q.C. Hu, X.J. Tong, Velocity-Free MS/AE Source Location Method for Three-Dimensional HoleContaining Structures. Engineering 6 (7), 827-834 (2020). DOI: https://doi.org/10.1016/j.eng.2019.12.016.
  • [31] Y.B. Zhang, X.L. Yao, P. Liang. Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology. Journal of Central South University 28 (9), 2752-2769 (2021). DOI: https://doi.org/10.1007/s11771-021-4806-7.
  • [32] L.J. Dong, Q.C. Hu, X.J. Tong, Empty region identification method and experimental verification for the twodimensional complex structure. International Journal of Rock Mechanics and Mining Sciences 147, 104885 (2021). DOI: https://doi.org/10.1016/j.ijrmms.2021.104885.
  • [33] L.J. Dong, X.J. Tong, J. Ma, Quantitative investigation of tomographic effects in abnormal regions of complex structures. Engineering 7 (7), 1011-1022 (2021). DOI: https://doi.org/10.1016/j.eng.2020.06.021.
  • [34] Y.F. Ren, Z.J. Li, Journal of China Coal Society, Experimental study on time series character of roof cutting in shallow working face 44 (S2), 399-409 (2019). DOI: https://doi.org/10.13225/j.cnki.jccs.2019.1125.
  • [35] Y.P. Wu, M.S. Lu, Analysis on the occurrence condition of sand burst in shallow buried stope. Mining Pressure and Roof Management 20 (3), 57-58 (2004). DOI: https://doi.org/10.3969/j.issn.1673-3363.2004.03.021.
  • [36] H.S. Jia, N.J. Ma, X.D. Zhao, “Open-close” law of longitudinal transfixion cracks in shallow buried coal face with thin bedrock. Journal of China Coal Society 40 (12), 2787-2793 (2015). DOI: https://doi.org/10.13225/j.cnki.jccs.2015.0065.
  • [37] H.J.G. Diersch, O. Kolditz. Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25 (8), 899-944 (2002). DOI: 10.1016/S0309-1708(02)00063-5.
  • [38] X. He, C. Zhang, P. Han. Overburden damage degree-based optimization of high-intensity mining parameters and engineering practices in China’s western mining area. Geofluids 2020, 8889663 (2020).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f281c5c3-8aa2-42ad-913d-216b62f74b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.