PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remote Sensing at the Service of Wetlands Mapping: A Case of the Lower Loukkos Complex (North-West Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite their highly recognized ecological values and ecosystem services, approved by the scientific community, wetlands are in perpetual degradation and their global spatial extension in significant regression. The conservation and sustainability of such ecosystems begins with their monitoring and delimitation. This study aims to develop an approach using open access remote sensing data to make this delineation. Applied to the coastal wetland complex of the lower Loukkos in the Mediterranean area, the methodology followed a two-step process. Firstly, it predicted the spaces favourable for water accumulation conditions, and secondly, it identified the presence of water and its response on the soil and vegetation. The approach was based on a theoretical modelling adopting the potential, existing, efficient wetland (PEEW) approach. The recordings from Sentinel sensors served as the basis for calculating indices Beven-Kirkby Index (BKI), Buffer zone Index (BZI), Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI) and Modified Normalized water difference index (MNDWI) to pre-locate and model potential wetland areas (PW). Photo Interpretation was used to map the existing wetland areas (EW). The estimated area of wetlands in the lower Loukkos region is 379 km2 for potential areas identified from topographic data and the hydrographic network, 120 km2 for areas dominated by wetlands detected by remote sensing of water bodies , vegetation and soil moisture, and 33 km2 for natural wetlands identified by photo-interpretation. As a result, the area of current wetlands is only about 9.5% of their theoretical past extent. The validity of this method was confirmed through a comparison of the results with field investigations and hydromorphic traits in soil surveys, as well as external soil mapping data, showing an 84% concordance.
Słowa kluczowe
Twórcy
  • Research Team on Natural Risks, Faculty of Sciences and Techniques, Tangier, Abdelmalik Essaadi University, Tetouan, BP 416, Morocco
  • Research Team on Natural Risks, Faculty of Sciences and Techniques, Tangier, Abdelmalik Essaadi University, Tetouan, BP 416, Morocco
autor
  • Research Team in Geomatics Remote Sensing and Cartography, Faculty of Sciences and Techniques, Tangier, Abdelmalik Essaadi University, Tetouan, BP 416, Morocco
  • Research Team in Geomatics Remote Sensing and Cartography, Faculty of Sciences and Techniques, Tangier, Abdelmalik Essaadi University, Tetouan, BP 416, Morocco
  • Research Team in Geomatics Remote Sensing and Cartography, Faculty of Sciences and Techniques, Tangier, Abdelmalik Essaadi University, Tetouan, BP 416, Morocco
Bibliografia
  • 1. Aurousseau P., Squividant H. 1995. Rôle environnemental et identification cartographique des sols hydromorphes de bas-fonds. Cas du bassin versant de la rade de Brest. Ingénieries Eau Agriculture Territoires, 01, 75–85.
  • 2. Bailly J.S., Puech C., Masse J. 2003. Application de l’imagerie à très haute résolution spatiale pour le suivi de l’hydromorphie du marais atlantique de Bourgneuf. Photointerprétation European Journal of Applied Remote Sensing, 1(39), 22–30.
  • 3. Barnaud G. 1991. Fonctions et rôle des zones humides. Proceedings of the 24th hydraulics days National Congress of the Hydrotechnical Society of France, pp. 18–20.
  • 4. Beltrame C., Perennou C., Guelmami A. 2015. Trends in land cover change in coastal wetlands around the Mediterranean Basin: Survey findings from 1975 to 2005. Méditerranée, 5, 97–111.
  • 5. Bendjoudi H., Hubert P. 2002. Le coefficient de compacité de Gravelius: analyse critique d’un indice de forme des bassins versants. Hydrological Sciences Journal, 47(6), 921–930.
  • 6. Beven K.J., Kirkby M.J. 1979. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrological Sciences Journal, 24(1), 43–69.
  • 7. Bouzille J.B. 2014. Écologie des zones humides. Concepts, méthodes et démarches. TEC & DOC, Paris.
  • 8. Brahmi N., Hatira A., Rabia M.C. 2010. Contribution de la télédétection et des systèmes d’information géographique à la prise en compte du risque de prolifération des Aedes dans les zones humides de Bizerte (Nord de la Tunisie). Physio-Géo, Physio-Géo, 4(-1),151–168.
  • 9. Cazals C., Rapinel S., Frison P.L., Bonis A., Mercier G., Mallet C., Corgne S., Rudant J.P. 2016. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images. Remote Sensing, 8(7), 570.
  • 10. Corbane C., Lang S., Pipkins K., Alleaume S., Deshayes M., Garcia Millan V.E., Strasser T., Borre J.V., Toon S., Michael F. 2015. Remote sensing for mapping natural habitats and their conservation status – New opportunities and challenges. International Journal of Applied Earth Observation and Geoinformation, 37, 7–16.
  • 11. Cowardin L. M., Myers V. I., 1974. Remote Sensing for Identification and Classification of Wetland Vegetation. The Journal of Wildlife Management, 38(2), 308–314.
  • 12. Dakki M. 2002. Eléments pour un plan de gestion du complexe de zones humides du bas Loukkos. Rapport inédit, Projet Conservation des Marais de Larache : étude de faisabilité (2001–2002). Groupe de Recherche pour la Protection des Oiseaux au Maroc /Institut. Scientifique /Fondation CICONIA, 24.
  • 13. Davranche A. 2008. Suivi de la gestion des zones humides camarguaises par télédétection en référence à leur intérêt avifaunistique. Ph.D. Thesis, Provence-I University, Aix-Marseille.
  • 14. Du Y., Zhang Y., Ling F., Wang Q., Li W., Li X. 2016. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sensing, 8(4), 354.
  • 15. Dusseux P. 2014. Exploitation de séries temporelles d’images satellites à haute résolution spatiale pour le suivi des prairies en milieu agricole. Ph.D. Thesis, Rennes 2 University, Upper Brittany.
  • 16. El Agbani M.A., Dakki M., Benhoussa A., Hammada S., Bennig O. 2003. Fiche descriptive sur les zones humides Ramsar du complexe du bas Loukkos. Proceedings of 8th session of the Conference of the Contracting Parties.
  • 17. El Hajj M., Baghdadi N., Zribi M. 2018. Estimation de l’humidité du sol par couplage d’images radar et optique. ISTE Groupe, London.
  • 18. Ellenberg H., Weber H., Düll R., Wirth V., Werner W., Paulissen D. 1991. Ökologische Zeigerwerte von Flechten – erweiterte und aktualisierte Fassung. Herzogia, 23(2), 229–248.
  • 19. Escadafal R., Gouinaud C., Mathieu R., Pouget M 1993. Le spectroradiomètre de terrain : un outil de la télédétection et de la pédologie. Cahier-ORSTOM, Pédologie, 28(1), 15–29.
  • 20. Gao B.C. 1996. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58(3), 257–266.
  • 21. Gardner R.C., Finlayson, C. 2018. Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Stetson University College of Law Research Paper, 2020(5), 1–89.
  • 22. Gilmore M.S., Wilson E.H., Barrett N., Civco D.L., Prisloe S., Hurd J.D., Chadwick C. 2008. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sensing of Environment, 112(11), 40–48.
  • 23. Larbi A., El Hamidi M.J., Faouzi M., Bouaamlat I. 2017. Modeling the Impacts of Climate Change on the Aquifers in Morocco. International Journal of Water Resources and Arid Environments, 6(2), 133–142.
  • 24. McCartney M., Acreman M.C. 2009. The wetlands handbook, Chapter 17 Wetlands and Water. Wiley-Blackwell, Chichester.
  • 25. McFeeters S.K. 1996. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Surface Water Features. International Journal of Remote Sensing, 17(7), 1425–1432.
  • 26. MEDDE and GIS Sol. 2013. Guide pour l’identification et la délimitation des sols de zones humides. Ministère de l’Écologie, du Développement Durable et de l’Énergie, Groupement d’Intérêt Scientifique Sol. Paris.
  • 27. Merot P., Hubert-Moy L., Gascuel-Odoux C., Clement B., Durand P., Baudry J., Thenail C. 2006. A Method for Improving the Management of Controversial Wetland. Environmental Management 37, 258–270.
  • 28. Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1), 62–66.
  • 29. Rapinel S. 2012. Contribution de la télédétection à l’évaluation des fonctions des zones humides : de l’observation à la modélisation prospective. Ph.D. Thesis, Rennes 2 University, Upper Brittany.
  • 30. Rapinel S., Clement B., Hubert-Moy L. 2019. Cartographie des zones humides par télédétection : approche multi-scalaire pour une planification environnementale. Cybergeo: European Journal of Geography, document 885.
  • 31. Skiner J., Zalewski S. 1995. Fonctions et Valeurs des zones humides méditerranéennes. Tour du Valat, Arles.
  • 32. Vivone G., Alparone L., Chanussot J., Dalla Mura M.D., Garzelli A., Licciardi G.A., Restaino R., Wald L. 2015. A Critical Comparison Among Pansharpening Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.
  • 33. Yarrow M.M., Salthe S.N. 2008. Ecological boundaries in the context of hierarchy theory. BioSystems journal, 92, 233–244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f28055a9-470c-4e46-8149-7442447b0da1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.