Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that, in Lp(0,∞) ( 1≤p<∞ ), bounded weighted translations as well as their unbounded counterparts are chaotic linear operators. We also extend the unbounded case to C0[0,∞) and describe the spectra of the weighted translations provided the underlying spaces are complex.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--135
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Department of Mathematics, De Anza College, 21250 Stevens Creek Blvd., Cupertino, CA 95014, USA
autor
- Department of Mathematics, California State University, Fresno, 5245 N. Backer Avenue, M/S PB 108, Fresno, CA 93740-8001, USA
Bibliografia
- [1] S. Rolewicz, On orbits of elements, Studia. Math. 32 (1969), 17–22.
- [2] M. V. Markin, On the chaoticity and spectral structure of Rolewicz-type unbounded operators, arXiv:1811.06640.
- [3] R. M. Aron, J. B. Seoan-Sepulveda, and A. Weber, Chaos on function spaces, Bull. Austral. Math. Soc. 71 (2005), 411–415.
- [4] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, New York, 1989.
- [5] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229–269.
- [6] J. Bès, K. C. Chan, and S. M. Seubert, Chaotic unbounded differentiation operators, Integral Equations Operator Theory 40 (2001), no. 3, 257–267.
- [7] K.-G. Grosse-Erdmann and A. P. Manguillot, Linear Chaos, Universitext, Springer-Verlag, London, 2011.
- [8] R. de Laubenfels, H. Emamirad, and K.-G. Grosse-Erdmann, Chaos for semigroups of unbounded operators, Math. Nachr. 261/262 (2003), no. 3, 47–59.
- [9] F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.
- [10] M. V. Markin, On general construct of chaotic unbounded linear operators in Banach spaces with Schauder bases, arXiv:1812.02294.
- [11] C. Kitai, Invariant Closed Sets for Linear Operators, Ph.D. Thesis, University of Toronto, Canada, 1982.
- [12] R. M. Gethner and J. H. Shapiro, Universal vector for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288.
- [13] N. Dunford and J. T. Schwartz with the assistance of W. G. Bade and R. G. Bartle, Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958.
- [14] M. V. Markin, Elementary Operator Theory, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin/Boston, 2020.
- [15] M. V. Markin, Real Analysis. Measure and Integration, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin/Boston, 2019.
- [16] M. V. Markin, On sufficient and necessary conditions for linear hypercyclicity and chaos, arXiv:2106.14872.
- [17] M. V. Markin and E. S. Sichel, On the non-hypercyclicity of normal operators, their exponentials, and symmetric operators, Mathematics 7 (2019), no. 10, 903.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2801f89-df8e-47ca-b0cb-fb677361093b