PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of mmWave multi-sector array using Bowtie antenna elements for 5G mobile base stations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projektowanie wielosektorowej macierzy mmWave z wykorzystaniem elementów anteny Bowtie dla mobilnych stacji bazowych 5G
Języki publikacji
EN
Abstrakty
EN
This paper proposes a compact multi-sector array structure based on bowtie antenna elements. The designed array consists of three (1×8) linear arrays to cover 360o. The array is designed to operate at 28 GHz on an RT/Duroid 5880 substrate to meet the high-frequency specifications with a thickness of 1.575 mm and a dielectric constant of 2.2, while the dissipation factor is (0.0009). Each array sector has a dimension of 30.17 mm as width and 6.4 mm as length. A beam steering performance is proved with the capability of switchable beams to offer directional/omnidirectional choices. Simulations results showed that the proposed array exhibits excellent reflection coefficient characteristics along with a high gain of up to 13.5 dBi and high radiation efficiency. Two configurations of array sectors are presented to introduce a flexible control of the array beams.
PL
W artykule zaproponowano kompaktową, wielosektorową strukturę macierzy opartą na elementach antenowych typu bowtie. Zaprojektowana macierz składa się z trzech (1×8) liniowych szyków pokrywających 360o. Macierz jest zaprojektowana do pracy z częstotliwością 28 GHz na podłożu RT/Duroid 5880 w celu spełnienia specyfikacji wysokiej częstotliwości przy grubości 1,575 mm i stałej dielektrycznej 2,2 przy współczynniku rozproszenia (0,0009). Każdy sektor tablicy ma wymiar 30,17 mm szerokości i 6,4 mm długości. Skuteczność sterowania wiązką została udowodniona dzięki możliwości przełączania wiązek w celu oferowania wyborów kierunkowych/wszechkierunkowych. Wyniki symulacji wykazały, że proponowana matryca wykazuje doskonałe właściwości współczynnika odbicia wraz z wysokim wzmocnieniem do 13,5 dBi i wysoką wydajnością promieniowania. Przedstawiono dwie konfiguracje sektorów matrycy w celu wprowadzenia elastycznego sterowania wiązkami matrycy.
Rocznik
Strony
115--120
Opis fizyczny
Bibliogr. 28 pz., rys.
Twórcy
  • College of Electronics Engineering, Ninevah University, Iraq, Nineveh, Mosul City
  • College of Electronics Engineering, Ninevah University, Iraq, Nineveh, Mosul City
Bibliografia
  • [1] Roh, Wonil, Ji-Yun Seol, Jeongho Park, Byunghwan Lee, Jaekon Lee, Yungsoo Kim, Jaeweon Cho, Kyungwhoon Cheun, and Farshid Aryanfar. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results." IEEE communications magazine 52, no. 2 (2014): 106-113.
  • [2] Kamaruddin, R.A.A., Ibrahim, I.B.M., Al-Gburi, A.J.A., Zakaria, Z., Shairi, N.A., Rahman, T.A. and Purnamirza, T., "Return Loss Improvement of Radial Line Slot Array Antennas on Closed Ring Resonator Structure at 28 GHz," Przegląd Elektrotechniczny, vol. 1, no. 5, pp. 65–69, 2021.
  • [3] Peng, Mingming, and Anping Zhao. "High performance 5G millimeter-wave antenna array for 37–40 GHz mobile application." In 2018 International workshop on antenna technology (iWAT), pp. 1-4. IEEE, 2018.
  • [4] Al-Gburi, A.J.A., Ibrahim, I.M., Zakaria, Z., Zeain, M.Y., Alwareth, H., Ibrahim, A.M. and Keriee, H.H., "High Gain of UWB CPW-fed Mercedes-Shaped Printed Monopole Antennas for UWB Applications," Prz. Elektrotechniczny, no. 5, pp. 70–73, 2021.
  • [5] A. J. A. Al-gburi, I. Bin, M. Ibrahim, Z. Zakaria, N. Farzana, and B. Mohd, “Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications,” Przegląd Elektrotechniczny, no. 11, pp. 26–29, 2021.
  • [6] A. J. A. Al-Gburi, I. M. Ibrahim, and Z. Zakaria, “An Ultra-Miniaturised MCPM Antenna for Ultra-Wideband Applications,” J. Nano Electron. Phys., vol. 13, no. 5, pp. 05012-1-05012–4, 2021.
  • [7] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, "Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna," J. Comput. Theor. Nanosci., vol. 17,pp. 1469–1473, 2020.
  • [8] Chen, Yikai, Jiacheng Zhao, and Shiwen Yang. "A novel stacked antenna configuration and its applications in dual-bandshared-aperture base station antenna array designs." IEEE Transactions on Antennas and Propagation 67, no. 12 (2019): 7234-7241.
  • [9] Cui, YueHui, RongLin Li, and HuanZhan Fu. "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations." IEEE transactions on antennas and propagation 62, no. 9 (2014): 4836-4840.
  • [10] Guo, Jiayin, Feng Liu, Luyu Zhao, Yingzeng Yin, Guan-Long Huang, and Yingsong Li. "Meta-surface antenna array decoupling designs for two linear polarized antennas coupled inH-plane and E-plane." IEEE Access 7 (2019): 100442-100452.
  • [11] A. J. A. Al-Gburi, I. Ibrahim, Z. Zakaria, and A. D. Khaleel, "Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure," ARPN J. Eng. Appl. Sci., vol. 14, no. 10, pp. 3390–3393.
  • [12] A. J. A. Al-gburi, I. M. Ibrahim, K. S. Ahmad, Z. Zakaria, M. Y. Zeain, M. K. Abdulhameed, and T. Saeidi "A miniaturised UWB FSS with Stop-band Characteristics for EM Shielding Applications," Przegląd Elektrotechniczny, no. 8, pp. 142–145, 2021.
  • [13] A. J. A. Al-gburi et al., "High Gain of UWB Planar AntennaUtilising FSS Reflector for UWB Applications," Comput. Mater. Contin., vol. 70, no. 1, 2022.
  • [14] Zhu, Yufeng, Yikai Chen, and Shiwen Yang. "Integration of 5G rectangular MIMO antenna array and GSM antenna for dualband base station applications." IEEE Access 8 (2020): 63175-63187.
  • [15] Al-Tarifi, Monjed A., Mohammad S. Sharawi, and Atif Shamim. "Massive MIMO antenna system for 5G base stations with directive ports and switched beamsteering capabilities." IET Microwaves, Antennas & Propagation 12, no. 10 (2018): 1709-1718.
  • [16] [8] N. Ojaroudiparchin, Ming Shen and G. F. Pedersen, "8×8planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations," 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1-5.
  • [17] Jia, Qinyin, Hongcheng Xu, M. F. Xiong, Binzhen Zhang, andJunping Duan. "Omnidirectional solid angle beam-switching flexible array antenna in millimeter wave for 5G micro base station applications." IEEE Access 7 (2019): 157027-157036.
  • [18] Yang, Qingling, Steven Gao, Qi Luo, Lehu Wen, Yong-Ling Ban, Xue-Xia Yang, Xiaofei Ren, and Jian Wu. "Cavity-backed slot-coupled patch antenna array with dual slant polarization for millimeter-wave base station applications." IEEE Transactions on Antennas and Propagation 69, no. 3 (2020): 1404-1413.
  • [19] Hong, Wonbin, Kwanghyun Baek, Yoon Geon Kim, Youngju Lee, and Byungchul Kim. "mmWave phased-array with hemispheric coverage for 5 th generation cellular handsets." InThe 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 714-716. IEEE, 2014.
  • [20] Ishfaq, Muhammad Kamran, Tharek Abd Rahman, Yoshihide Yamada, and Kunio Sakakibara. "8× 8 Phased series fed patch antenna array at 28 GHz for 5G mobile base station antennas." In 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 160-162. IEEE, 2017.
  • [21] Rebato, Mattia, Michele Polese, and Michele Zorzi. "Multisector and multi-panel performance in 5g mmWave cellular networks." In 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1-6. IEEE, 2018.
  • [22] Tariq, Salahuddin, Dimitris Psychoudakis, Oren Eliezer, and Farooq Khan. "A new approach to antenna beamforming for millimeter-wave fifth generation (5G) systems." In 2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), pp. 1-5. IEEE, 2018.
  • [23] Parchin, N. Ojaroudi, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, and P. S. Excell. "60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks." International Journal of Information and Communication Engineering 14, no. 2 (2020): 50-54.
  • [24] Parchin, Naser Ojaroudi, Yasir Al-Yasir, Ahmed M. Abdulkhaleq, Issa Elfergani, Ashwain Rayit, James M. Noras, Jonathan Rodriguez, and Raed A. Abd-Alhameed. "Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets." In International Conference on Broadband Communications, Networks and Systems, pp. 438-445. Springer, Cham, 2018.
  • [25] Parchin, Naser Ojaroudi, Ming Shen, and Gert Frelund Pedersen. "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications." In 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1-4. IEEE, 2016.
  • [26] Younus, K. M. and K. H. Sayidmarie, “A tri-band frequency reconfigurable slot antenna for wireless applications,” ACES Journal Applied Computational Electromagnetics Society, Vol. 35, No. 2, 194–200, 2020.
  • [27] K. H. Sayidmarie and Karam Younus, K. M., "Analysis and Design of Two-Slot Antennas for Wireless Communication Applications," Progress In Electromagnetics Research C, Vol. 104, 115-128, 2020.
  • [28] Wu, Zehai, Biqun Wu, Zhenhua Su, and Xiuyin Zhang. "Development challenges for 5G base station antennas." In 2018 International Workshop on Antenna Technology (iWAT), pp. 1-3. IEEE, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2746be0-233e-4007-ab5a-051d91f1198b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.