Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
LPG storage tanks may be seriously threatened by a fire coming from nearby fuels or by leakage appearance. The aim of the study was to prepare a three-dimensional model of LPG release on a car gas station under different environmental conditions. CFD simulations of liquid and gas phase release from a tank localized on a car gas station was performed. First, ALOHA software was applied to determine mass flow rate, while Ansys software was used to determine the shape and size of hazardous zone. To reflect real condition atmospheric stability classes were applied. It was observed that for classes A-D the hazardous zone was decreasing. While, for E and F class the range was increased. It was noticed that the location of the leakage affects the extent of the danger zone. For the leaking below the liquid surface analyzed LPG has liquid form. While, for the leaking above the liquid surface analyzed LPG has gas form. Furthermore, for liquid leakage the largest hazard zone of release was observed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
65--77
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- The Main School of Fire Service, Warsaw, Poland
- The Main School of Fire Service, Warsaw, Poland
autor
- The Main School of Fire Service, Warsaw, Poland
- Department of Medical Biotechnology, Jagiellonian University, Krakow, Poland
autor
- The Main School of Fire Service, Warsaw, Poland
Bibliografia
- Pontiggia, M., Landucci, G., Busini, V., Derudi, M., Alba, M., Scaioni, M., Bonvicini, S., Cozzani V. & Rota, R. (2011). CFD model simulation of LPG dispersion in urban areas. Atmospheric Environment, 11.
- Piecuch, T., Andriyevska, L., Dabrowski, J., Dabrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Treatment of Wastewater from Car Service Station. Rocznik Ochrona Środowiska, 14.
- Polanczyk, A., Piechota-Polanczyk, A. & Dmochowska, A. (2019). The influence of the soil type on the permeability of petroleum derivatives. Rocznik Ochrona Środowiska, 13.
- Majder-Lopatka M., Wesierski, T., Dmochowska, A., Salamonowicz, Z. & Polanczyk, A. (2020). The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors. Sustainability.
- Polanczyk, A., Salamonowicz, Z., Majder-Lopatka, M., Dmochowska, A., Jarosz, W., Matuszkiewicz R. & Makowski, R. (2018). 3D Simulation of Chlorine Dispersion in Rrural Area. Rocznik Ochrona Środowiska, 14.
- Polanczyk, A., Majder-Lopatka, M., Dmochowska, A. & Salamonowicz, Z. (2020). Analysis of combustion process of protective coating paints. Sustainability.
- D'Aulisa, A., Tugnoli, A., Cozzani, V., Landucci, G. & Birk, A.M. (2014). CFD Modeling of LPG Vessels Under Fire Exposure Conditions. AIChE Journal, 14.
- Polanczyk, A., Ciuka-Witrylak, M., Synelnikov O. & Loik, V. (2018). Analysis of sorption of vehicle liquids with sand that appear after car accidents reproduced in laboratory scale. MATEC Web of Conferences, 8.
- Lovreglio, R., Ronchi, E., Maragkos, G., Beji, T. & Merci, B. (2016). A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling. J Hazard Mater, 758-771.
- Polanczyk, M. Majder-Lopatka, Z. Salamonowicz, A. Dmochowska, W. Jarosz, R. Matuszkiewicz R. & Makowski R. (2018). Environmental Aspects of Sorption Process. Rocznika Ochrona Środowiska, 13.
- Polanczyk, A., Piechota-Polanczyk, A., Dmochowska, A., Majder-Lopatka, M. & Salamonowicz, Z. (2020). Analysis of the Effectiveness of Decontamination Fluids on the Level of Biological Contamination of Firefighter Suits. International Journal of Environmental Research and Public Health, 10.
- Scarponi, G.E., Landucci, G., Heymes, F. & Cozzani, V., (2017). Experimental and numerical study of the behavior of LPG tanks exposed to wildland fires. Process Safety and Environmental Protection, 20.
- Giordano EmrysScarponi, G.E., Pastor, E., Planas, E. & Cozzani, V. (2020). Analysis of the impact of wildland-urban-interface fires on LPG domestic tanks. 15.
- Tugnoli, A., Cozzani, V., Khan, F. & Amyotte, P. (2013). 6 - Missile Projection Effects. Domino Effects in the Process Industries Modelling, Prevention and Managing, 48.
- Hannaa, S. R. Olav, R., Hansenb, R., Ichard M. & Strimaitis, D. (2009). CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmospheric Environment, 9.
- Polanczyk, A. & Salamonowicz, Z. (2018). Computational modeling of gas mixture dispersion in a dynamic setup – 2d and 3d numerical approach. E3S Web of Conferences, 8.
- Wawrzyniak, P., Podyma, M., Zbicinski, I., Bartczak Z., Polanczyk, A. & Rabaeva, J. (2012). Model of Heat and Mass Transfer in an Industrial CounterCurrent Spray-Drying Tower. Drying Technology, 9.
- Wawrzyniak, P., Polanczyk, A., Zbicinski, I., Jaskulski, M., Podyma, M. & Rabaeva, J. (2012). Modeling of Dust Explosion in the Industrial Spray Dryer. Drying Technology, 10.
- Czapczuk, A., Dawidowicz, J. & Piekarski, J. (2017). Application of Multilayer Perceptron for the Calculation of Pressure Losses in Water Supply Lines. Rocznik Ochrona Środowiska, 11.
- Wang, K., Liu, Z., Qian, X. & Huang, P. (2017). Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. Journal of Loss Prevention in the Process Industries, 10.
- Thoman, D.C., O'Kula, K.R., Laul, J.C., Davis, M.W. & Knecht, K.D. (2006). Comparison of ALOHA and EPIcode for Safety Analysis Applications. Journal of Chemical Health and Safety, 14.
- Polanczyk, A., Wawrzyniak, P. & Zbicinski, I. (2013). CFD analysis of dust explosion relief system in the counter-current industrial spray drying tower. Drying Technology, 10.
- Salamonowicz, Z., Kotowski, M., Polka, M. & Barnat, W. (2015). Numerical simulation of dust explosion in the spherical 20l vessel. Bulletin of the Polish Academy of Sciences. Technical Sciences, 5.
- Salamonowicz, Z., Krauze, A., Majder-Lopatka, M., Dmochowska, A., Piechota-Polanczyk, A. & Polanczyk, A. (2021). Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes. Processes, 17.
- Thoman, D.C., Davis, M.W. & O'Kula, K.R. (2005). A Comparison of EPIcode and ALOHA Calculations for Pool Evaporation and Chemical Atmospheric Transport and Dispersion. Washington Safety Management Solutions LLC, 15.
- Tsenga, J.M., Sua, T.S. & K. C.Y. (2012). Consequence Evaluation of Toxic Chemical Releases by ALOHA. Procedia Engineering, 6.
- Sun, B., Utikara, R. P., Pareeka, V. K. & Guob, K. (2013). Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies. Journal of Loss Prevention in the Process Industries, 12.
- Ganta, S.E., Narasimhamurthyb, V.D., Skjoldb, T., Jamoisc, D. & P. C. (2014). Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage. Journal of Loss Prevention in the Process Industries, 23.
- Zieminska-Stolarska, A., Polanczyk, A. & Zbicinski, I. (2015). 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir. Journal of Hydrology and Hydromechanics, 8.
- Pontiggiaa, M.M., Derudi, M., Alba, M., Scaioni, M. & Rota, R. (2010). Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling. Journal of Hazardous Materials, 8.
- Krügera, E. & Emmanuel, R. (2013). Accounting for atmospheric stability conditions in urban heat island studies: The case of Glasgow, UK. Landscape and Urban Planning, 10.
- Scarponi, G.E., Pastor, E., Planas, E. & Cozzani, V. (2020). Analysis of the impact of wildland-urban-interface fires on LPG domestic tanks. Safety Science.
- Mack, M. & Spruijt, M.P.N. (2014). CFD dispersion investigation of CO2 worst case scenarios including terrain and release effects. Energy Procedia, 10.
- Xing, J., Liu, Z., Huang, P., Feng, C., Zhou, Y., Zhang, D. & Wang, F. (2013). Experimental and numerical study of the dispersion of carbon dioxide plume. J. Hazard Mater, 40(8).
- Sklavounos, S. & Rigas, F. (2004). Validation of turbulence models in heavy gas dispersion over obstacles. J. Hazard Mater, 9(20).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f270bf9e-ed88-4d9c-839f-b2314d1b8c4a