PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of GGMs based on the terrestrial gravity disturbance and Moho depth in Afar, Ethiopia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To estimate Moho depth, geoid, gravity anomaly, and other geopotential functionals, gravity data is needed. But, gravity survey was not collected in equal distribution in Ethiopia, as the data forming part of the survey were mainly collected on accessible roads. To determine accurate Moho depth using Global Gravity Models (GGMs) for the study area, evaluation of GGMs is needed based on the available terrestrial gravity data. Moho depth lies between 28 km and 32 km in Afar. Gravity disturbances (GDs) were calculated for the terrestrial gravity data and the recent GGMs for the study area. The model-based GDs were compared with the corresponding GD obtained from the terrestrial gravity data and their differences in terms of statistical comparison parameters for determining the best fit GGM at a local scale in Afar. The largest standard deviation (SD) (36.10 mGal) and root mean square error (RMSE) (39.00 mGal) for residual GD and the lowest correlation with the terrestrial gravity (0.61 mGal) were obtained by the satellite-only model (GO_CONS_GCF_2_DIR_R6). The next largest SD (21.27 mGal) and RMSE (25.65 mGal) for residual GD were obtained by the combined gravity model (XGM2019e_2159), which indicates that it is not the best fit model for the study area as compared with the other two GGMs. In general, the result showed that the combined models are more useful tools for modeling the gravity field in Afar than the satellite-only GGMs. But, the study clearly revealed that for the study area, the best model in comparison with the others is the EGM2008, while the second best model is the EIGEN6C4.
Rocznik
Strony
78--100
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Geodesy and Geodynamics Research and Development Department, Entoto Observatory and Research Centre (EORC), Ethiopian Space Science and Technology Institute (ESSTI), Addis Ababa, Ethiopia
Bibliografia
  • Barthelmes F. (2013) Definition of Functional of the Geopotential and Their Calculation from Spherical Harmonic Models, Scientific Technical Report STR09/02: Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. https://doi.org/10.2312/GFZ.b103-0902-26.
  • Barthelmes F. (2014) Global models. In: Grafarend E. (Ed.) Encyclopedia of Geodesy. Springer International Publishing, Switzerland, 1-9, https://doi.org/10.1007/978-3-319- 02370-043-1.
  • Bhattacharyya B. K. (1978) Computer modeling in gravity and magnetic interpretation. Geophysics, Vol. 43, No. 5, 912-929.
  • Birbiraw D. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at central and western part of Ethiopia, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Etiopia.
  • Bolkas D., Fotopoulos G., and Braun A. (2016) On the impact of airborne gravity data to fused gravity field models, Journal of Geodesy, Vol. 90, No. 6, 561-571.
  • Bruinsma S., Förste C., Abrikosov O., Lemoine J., Marty J., Mulet S., Rio M., and Bonvalot S. (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data; Geophysical Research Letters, Vol. 41, No. 21, 7508-7514, https://doi.org/10.1002/2014GL062045.
  • Ermias W. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at DebreBirhan city, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Etiopia.
  • Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C.H., Pineiro J., and da Costa A. (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy, Vol. 85, No. 11, 749-758.
  • Förste C., Abrykosov O., Bruinsma S., Dahle C., König R., and Lemoine J. (2019) ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission (GO_CONS_GCF_2_DIR_R6). GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.004.
  • Förste C., Bruinsma S. L., Abrikosov O., Lemoine J.-M., Marty J. C., Flechtner F., Balmino G., Barthelmes F., and Biancale R. (2014) EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1.
  • Gerard A. and Debeglia N. (1975) Automatic three dimensional modeling for the interpretation of gravity or magnetic anomalies. Geophysics, Vol.40, No. 6, 1014-1034.
  • Godah W., Szelachowska M., and Krynski J. (2017) On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. ActaGeophysica, Vol. 65, 713-725.
  • Hackney R.I., Featherstone W.E. (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophysical Journal International, Vol. 154, Issue 1, 35-43, https://doi.org/10.1046/j.1365-246X.2003.01941.x.
  • Hammond J.O.S., Kendall J.M., Stuart G.W., Keir D., Ebinger C., Ayele A., and Belachew M. (2011) The nature of the crust beneath the afar triple junction: Evidence from receiver functions, Geochemistry, Geophysics, Geosystems,, Vol. 12, Q12004, https://doi.org/10.1029/2011GC003738.
  • Heiskanen W. A., and Moritz H. (1967) Physical geodesy: W.H. Freeman and Company.
  • Hildenbrand T.G., Briesacher A., Flanagan G., Hinze W.J., Hittelman A.M., Keller G.R., Kucks R.P., Plouff D., Roest W., Seeley J., Smith D.A., and Webring M. (2002) Rationale and Operational Plan to Upgrade the U.S Gravity Database. USGS Open-File Report 02-463.
  • Ince E.S., Barthelmes F., Reißland S., Elger K., Förste C., Flechtner F., Schuh H. (2019) ICGEM - 15 years of successful collection and distribution of global gravitational models, associated services and future plans. - Earth System Science Data, 11, pp. 647-674, http://doi.org/10.5194/essd-11-647-2019.
  • Kivior I. and Boyd D. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Canadian Journal of Exploration Geophysics, Vol. 34, No. 1 and 2, 58-66.
  • Lavayssière A., Rychert C., Harmon N., Keir D., Hammond J.O., Kendall J.M., Doubre C., Leroy S. (2018) Imaging Lithospheric Discontinuities beneath the Northern East African Rift Using S-to-P Receiver Functions. Geochemistry, Geophysics, Geosystems, Vol. 19, No. 10, 4048-4062. https://doi.org/10.1029/2018gc007463.
  • Novák P., 2010. Direct modeling of the gravitational field using harmonic series. Acta Geodynamica et Geomaterialia, Vol. 7, No. 1, 35-47.
  • Oliveira Jr., Vanderlei C., Uieda L, Hallam K., Barbosa A.T., and Valéria C.F. (2018) Code and data for "Should geophysicists use the gravity disturbance or the anomaly?” https://doi.org/10.5281/zenodo.1255306.
  • Pavlis N.K., Holmes S. A., Kenyon S. C., and Factor J. K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4).
  • Philippe N.N., Eliezer M.D., Théophile N.M. and Tabod C.T. (2006) Spectral analysis and gravity modelling in the Yagoua, Cameroon, sedimentary basin, GeofísicaInternacional, Vol. 45, No. 2.
  • Reigber C., Lühr H., and Schwintzer P. (2002) CHAMP mission status. Advances in Space Research, Vol. 30, No. 2, 129-134. https://doi.org/10.1016/S0273-1177(02)00276-4.
  • Rummel R., Balmino G., Johannessen J., Visser P., and Woodworth P. (2002) Dedicated gravity field missions-principles and aims, Journal of Geodynamics, Vol. 33, 3-20.
  • Spector A. and Grant F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, Vol.35,293-302.
  • Tapley B.D., Bettadpur S., Watkins M., and Reigber C. (2004) The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, Vol. 31, L09607.https://doi.org/10.1029/2004GL019920.
  • Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2017) The evaluation of high-degree geopotential models for regional geoid determination in Turkey, AKU Journal of Science and Engineering, Vol. 17, No. 1, 147-153.
  • Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2016) Evaluation of recent global geopotential models by GNSS/Levelling data: Internal Aegean region. International Journal of Engineering and Geosciences, Vol. 1, No. 1, 15-19. https://doi.org/10.26833/ijeg.285221.
  • Zerihun G. (2017) Evaluation of Gravity Field Models: EIGEN-6C4 and GOCO03S combined with EGM08 using GNSS-Levelling, Unpublished Master thesis, Adama Science and Technology University, Adama, Etiopia.
  • Zingerle P., Pail R., Gruber T., and Oikonomidou X. (2019) The experimental gravity field model XGM2019e. GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f26cf054-09e0-4290-8919-e6edc5041415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.