PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Air permeability and sorptivity of concrete modified with viscosity modifying agents

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przepuszczalność i sorpcyjność betonu wykonanego z użyciem dodatku modyfikującego lepkość
Języki publikacji
EN
Abstrakty
EN
The paper presents the effect of a viscosity modifying admixture (VMA) on the air permeability, sorptivity and strength parameters (compressive and tensile strength) of concrete. The Atlas VM-500 admixture used in the research is a well-known additive that is commonly applied in concrete technology. Air permeability tests were carried out using the Torrent method. It was found that viscosity modifying admixtures (VMAs) have a significant impact on the permeability of concrete. The lowest values of the kT coefficient were obtained for specimens that matured in a water environment, and which contained 0.5% of VMA. This amount of additive reduced permeability by 34% when compared to the reference series of concrete. For air-conditioned specimens with 1.2% of VMA, the maximum decrease was 28% when compared to the reference samples. In the case of samples conditioned in an environment with an increased humidity, the maximum decrease occurred with a lower VMA content of 0.5% and amounted to 27% when compared to the reference samples. In addition, it was shown that the addition of 1.2% of VMA improved the compressive strength of concrete by 2.3% during its curing in water. In turn, this amount of VMA deteriorated its strength by 10.4% when the specimens were conditioned in air, and by 8.1% when they were conditioned in high humidity.
PL
Mineralne materiały budowlane, w tym także betony cementowe posiadają porowatą strukturę, które bardzo łatwo mogą penetrować ciecze i gazy znajdujące się w środowisku naturalnym. Dlatego też wprowadza się miarę, powiazaną z trwałością betonu tzw. przepuszczalność, którą określić można na drodze pomiaru wielkości charakteryzujących przepływ cieczy lub gazów. Bardzo często na potrzeby oceny potencjalnej trwałości betonu prowadzony jest pomiar nasiąkliwości lub sorpcyjności [6-8, 33]. W celu oceny przepuszczalności coraz częściej uznanie znajduje metoda Torrenta [19-21]. Pomiar ten ogranicza się do przepływu powietrza w kilkucentymetrowej, powierzchniowej warstwie betonu. Na przepuszczalność betonu mierzoną różnymi metodami, bardzo istotny wpływ ma jego stan wilgotnosciowy [29-32]. W przypadku metody Torrenta problem ten został przez jej twórców rozwiązany na drodze doświadczalnego ustalenia tego wpływu i wyposażeniu aparatu w sondę do pośredniego pomiaru wilgotności betonu, której zastępczą miarą jest jego oporność właściwa. Celem niniejszej pracy było określenie wpływu zastosowanych w betonach dodatków VMA na przepuszczalność powietrza oraz sorpcyjność, jak i parametry wytrzymałościowe (ściskanie i rozłupywanie) otrzymanych kompozytów, pielegnowanych przez 28 dni w zróżnicowany sposób.
Rocznik
Strony
223--240
Opis fizyczny
Bibliogr. 46 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland (student)
Bibliografia
  • [1] A. Leemann, F. Winnefeld, “The effect of viscosity modifying agents on mortar and concrete”, Cement and Concrete Composites, 2007, vol. 29, no. 5, pp. 341-349, DOI: 10.1016/j.cemconcomp.2007.01.004.
  • [2] B. Aïssoun, K. Khayat, J.L. Gallias, “Variations of sorptivity with rheological properties of concrete cover in self-consolidating concrete”, Construction and Building Materials, 2016, vol. 113, pp. 113-120, DOI: 10.1016/j.conbuildmat.2016.03.006.
  • [3] P. Łukowski, Modyfikacja materiałowa betonu. Warszawa: Stowarzyszenie Producentów Cementu, 2016.
  • [4] K.H. Khayat, Z. Guizani, “Use of viscosity-modifying admixture to enhance stability of fluid concrete”, ACI Materials Journal, 1997, vol. 94, no. 4, pp. 332-340, DOI: 10.14359/317.
  • [5] K.H. Khayat, “Effects of antiwashout admixtures on properties of hardened concrete”, ACI Materials Journal, 1996, vol. 93, no. 2, pp. 134-146, DOI: 10.14359/1412.
  • [6] M.A. Glinicki, “Methods of qualitative and quantitative assessment of concrete air entrainment”, Cement, Wapno, Beton, 2014, no. 6, pp. 359-369.
  • [7] M.A. Glinicki, M. Zieliński, “Air void system in concrete containing circulating fluidized bed combustion fly ash”, Materials and Structures, 2008, vol. 41, no. 4, pp. 681-687, DOI: 10.1617/s11527-007-9273-6.
  • [8] W. Kubissa, Sorpcyjność betonu. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2016.
  • [9] D.P. Bentz, K.A. Snyder, M.A. Peltz, K. Obla, H. Kim, “Viscosity modifiers to enhance concrete performance”, ACI Materials Journal, 2013, vol. 110, no. 5, pp. 495-502, DOI: 10.14359/51685900.
  • [10] ACI Committee 231, Report on Early-Age Cracking: Causes, Measurement, and Mitigation (ACI 231R-10). Farmington Hills, MI: American Concrete Institute, 2010.
  • [11] D.P. Bentz, K.A. Snyder, L.C. Cass, M.A. Peltz, “Doubling the service life of concrete structures. I: Reducing ion mobility using nanoscale viscosity modifiers”, Cement and Concrete Composites, 2008, vol. 30, no. 8, pp. 674-678, DOI: 10.1016/j.cemconcomp.2008.05.001.
  • [12] R.A. Robinson, R.H. Stokes, Electrolyte Solutions: Second Revised Edition. Mineola, NY: Dover Publications Inc., 2002.
  • [13] T. Tracz, “Ocena przydatności badań wodoszczelności i gazoprzepuszczalności betonów wysokowartościowych”, Zeszyty Naukowe. Budownictwo / Politechnika Śląska, 2002, vol. 95, pp. 503-512.
  • [14] L.J. Parrott, “Moisture conditioning and transport properties of concrete test specimens”, Materials and Structures, 1994, vol. 27, no. 8, pp. 460-468, DOI: 10.1007/BF02473450.
  • [15] A. Abbas, M. Carcasses, J.P. Ollivier, “Gas permeability of concrete in relation to its degree of saturation”, Materials and Structures, 1999, vol. 32, no. 1, pp. 3-8, DOI: 10.1007/bf02480405.
  • [16] J. Liu, F. Agostini, F. Skoczylas, “From relative gas permeability to in situ saturation measurements”, Construction and Building Materials, 2013, vol. 40, pp. 882-890, DOI: 10.1016/j.conbuildmat.2012.11.092.
  • [17] W. Kubissa, M.A. Glinicki, “Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index”, Construction and Building Materials, 2017, vol. 147, pp. 352-361, DOI: 10.1016/j.conbuildmat.2017.04.177.
  • [18] RILEM, “Tests for gas permeability of concrete, TC 116-PCD: Permeability of concrete as criterion of its durability”, Materials and Structures, 1999, vol. 32, no. 4, pp. 174-179, DOI: 10.1007/BF02481509.
  • [19] F. Jacobs, A. Leemann, T. Teruzzi, R.J. Torrent, E. Denarié, “Specification and site control of the permeability of the cover concrete: The Swiss approach Dedicated to Professor Dr . Bernhard Elsener on the occasion of his 60th birthday”, Materials and Corrosion, 2012, vol. 63, no. 12, pp. 1127-1133, DOI: 10.1002/maco.201206710.
  • [20] R.J. Torrent, J. Armaghani, Y. Taibi, “Evaluation of port of Miami tunnel segments”, Concrete international, 2013, vol. 35, no. 5, pp. 39-463.
  • [21] W. Kubissa, “Air Permeability of Air-Entrained Hybrid Concrete Containing CSA Cement”, Buildings, 2020, vol. 10, no. 7, pp. 1-13, DOI: 10.3390/buildings10070119.
  • [22] R. Torrent, G. Frenzer, “A method for rapid determination of the coefficient of permeability of the ‘covercrete”’, in International Symposium Non-Destructive Testing in Civil Engineering. 1995, pp. 985-992.
  • [23] R.J. Torrent, “A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site”, Materials and Structures, 1992, vol. 25, pp. 358-365, DOI: 10.1007/BF02472595.
  • [24] H. Beushausen, R. Torrent, M. G. Alexander, “Performance-based approaches for concrete durability: State of the art and future research needs”, Cement and Concrete Research, 2019, vol. 119, pp. 11-20, DOI: 10.1016/j.cemconres.2019.01.003.
  • [25] “Swiss Standard, SIA 262/1, ‘Concrete Structures-Supplementary Specifications, Annex E: Air-Permeability on the Structure”. 2013.
  • [26] M. Boumaaza, B. Huet, G. Pham, P. Turcry, A. Aït-Mokhtar, C. Gehlen, “A new test method to determine the gaseous oxygen diffusion coefficient of cement pastes as a function of hydration duration, microstructure, and relative humidity”, Materials and Structures, 2018, vol. 51, pp. 50-67, DOI: 10.1617/s11527-018-1178-z.
  • [27] Laboratoire Central des Ponts et Chaussées (France), Maîtrise de la durabilité des ouvrages d’art en béton: application de l’approche performantielle. Paris: Laboratoire Central des Ponts et Chaussées, 2010.
  • [28] V. Baroghel-Bouny, “Durability indicators: relevant tools for performance-based evaluation and multi-level prediction of RC durability”, in Proceedings of international RILEM workshop on performance based evaluation and indicators for concrete durability, Madrid 19-21, 2006. RILEM Publications, 2007.
  • [29] M. Romer, “Effect of moisture and concrete composition on the Torrent permeability measurement”, Materials and Structures, 2005, vol. 38, 541-547; DOI: 10.1007/BF02479545.
  • [30] B. Kucharczyková, P. Misák, T. Vymazal, “Determination and evaluation of the air permeability coefficient using Torrent Permeability Tester”, Russian Journal of Nondestructive Testing, 2010, vol. 46, pp. 226-233, DOI: 10.1134/s1061830910030113.
  • [31] F. Jacobs, M. Basheer, C. Andrade, “Effects of moisture and temperature on non-destructive penetrability tests”, in Non-Destructive Evaluation of the Penetrability and Thickness of the Concrete Cover-State-of-the-Art Report of RILEM Technical Committee 189-NEC. 2007, pp. 113-131.
  • [32] M. Glinicki, G. Nowowiejski, M. Dąbrowski, K. Gibas, “Wpływ wilgotności betonu i dodatków popiołowych na gazoprzepuszczalność określona metodą Torrenta”, in VI Konferencja Dni Betonu-Tradycja i Nowoczesność, 2010, pp. 711-720.
  • [33] K.H. Yang, J.K. Song, K.I. Song, “Assessment of CO2 reduction of alkali-activated concrete”, Journal of Cleaner Production, 2013, vol. 39, pp. 265-272, DOI: 10.1016/j.jclepro.2012.08.001.
  • [34] Z.A. Kameche, F. Ghomari, M. Choinska, A. Khelidj, “Assessment of liquid water and gas permeabilities of partially saturated ordinary concrete”, Construction and Building Materials, 2014, vol. 65. pp. 551-565, DOI: 10.1016/j.conbuildmat.2014.04.137.
  • [35] W. Kubissa, R. Jaskulski, T. Simon, “Surface blast-cleaning waste as a replacement of fine aggregate in concrete”, Architecture Civil Engineering Environment, 2017, vol. 3, pp. 89-94.
  • [36] P.W. Trinder, Review of the Use of Xypex Waterproofing Admixture and Concentrate for CC300 Tsuen Wan Station and Approach Tunnels. 2015.
  • [37] D. Yodmalai, R. Sahamitmongkol, S. Tangtermsirikul, “Chloride resistance of cement paste with crystalline materials”, Annual Concrete Conference, 2009, vol. 6, pp. 365-370.
  • [38] T. Poinot, A. Govin, P. Grosseau, “Influence of hydroxypropylguars on rheological behavior of cement-based mortars”, Cement and Concrete Research, 2014, vol. 58, pp. 161-168, DOI: 10.1016/j.cemconres.2014.01.020.
  • [39] T.H. Phan, M. Chaouche, M. Moranville, “Influence of hydroxypropylguars on rheological behavior of cement-based mortars”, Cement and Concrete Research, 2006, vol. 36, no. 10, pp. 1807-1813, DOI: 10.1016/j.cemconres.2006.05.028.
  • [40] W. Kubissa, R. Jaskulski, “Measuring and Time Variability of The Sorptivity of Concrete”, Procedia Engineering, 2013, vol. 57, pp. 634-641, DOI: 10.1016/j.proeng.2013.04.080.
  • [41] T. Tracz, J. Śliwiński, “The effect of concrete surface polishing on permeability evaluated with Torrent’s method”, in Awarie Budowlane 2013. 2013, pp. 873-880.
  • [42] C. Tasdemir, “Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete”, Cement and Concrete Research, 2003, vol. 33, no. 10, pp. 1637-1642, DOI: 10.1016/S0008-8846(03)00112-1.
  • [43] A. Benli, M. Karatas, Y. Bakir, “An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume”, Construction and Building Materials, 2017, vol. 144, pp. 552-562, DOI: 10.1016/j.conbuildmat.2017.03.228.
  • [44] H.Ye, N. Jin, X. Jin, “An experimental study on relationship among water sorptivity, pore characteristics, and salt concentration in concrete”, Periodica Polytechnica Civil Engineering, 2017, vol. 61, no. 3, pp. 530-540, DOI: 10.3311/PPci.9621.
  • [45] K. Gibas, M.A. Glinicki, G. Nowowiejski, “Evaluation of impermeability of concrete containing calcareous fly ash in respect to environmental media”, Roads and Bridges - Drogi i Mosty, 2013, vol. 12, no. 2, pp. 159-171, DOI: 10.7409/rabdim.013.012.
  • [46] R. Torrent, V. Bueno, F. Moro, A. Jornet, “Suitability of impedance surface moisture meter to complement air-permeability tests”, in RILEM International Conference on Sustainable Materials, Systems and Structures. 2019, pp. 1-8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f26b5ee2-8438-4aa6-be35-776bc7990d0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.