PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measures to reduce the residual field and field gradient inside a magnetically shielded room by a factor of more than 10

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Very low residual magnetic field and field gradients are essential for a number of high resolution fundamental physical experiments and for further improvement of very sensitive magnetic measurement devices. The scope ranges from spin precession experiments, e.g. with 3He or neutrons, to biomagnetic measurements, like magnetoencephalograms, and to low field MR spectroscopy. One method of reducing environmental magnetic noise is to use a magnetically shielded room (MSR). Here, measures are demonstrated to improve residual field and field gradient inside a common MSR by a factor of more than 10 by a specific degaussing procedure, material selection of prefabricated parts and active shielding. The process is independent of the shielding factor and works also properly for heavily shielded rooms.
Rocznik
Strony
237--248
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
  • Physikalisch-Technische-Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
  • Physikalisch-Technische-Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische-Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische-Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische-Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
Bibliografia
  • [1] Gemmel, C, et al. (2010). Limit on Lorentz and CPT violation of the bound neutron using a free precession. Physical Review, 11. 111901-1 - 111901-5
  • [2] Baker, C. A., et al. (2011). The search for the neutron electric dipole moment at the Paul Scherrer Institute. Physics Procedia. 17. 159-167
  • [3] Altarev, I., et al. (2012). A next generation measurement of the electric dipole moment of the neutron at the FRM II. Il Nuovo Cimento 35 C 122)
  • [4] Höfner, N., et al. (2011). Are brain currents detectable by means of Low-Field NMR? - a phantom study - Magnetic Resonance Imaging. 29. 1365-1373
  • [5] Hilschenz, I., et al. (2012). Magnetic resonance imaging at frequencies below 1 kHz. Magnetic Resonance Imaging. doi: 10.1016/j.mri.2012.06.014
  • [6] Burghoff, M., et al. (2009). SQUID SYSTEM FOR MEG AND LOW FIELD MAGNETIC RESONANCE. Metrology and Measurement systems. 16. 3. 371-375
  • [7] Hari, R., et al. (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 20. 44.49
  • [8] Cohen, D., et al. (1967). A Shielded Facility for Low Level Magnetic Measurements. J. Appl. Phys. 38. doi.org/10.1063/1.1709590,
  • [9] Summer, T. J. (1987). Convectional magnetic shielding. J. Phys. D: Appl. Phys. 20.
  • [10] Bork, J., et al. (2000). The 8-layered magnetically shielded room of the PTB. Biomag Proceedings. 970-973
  • [11] Burghoff, M., et al. (2004). Discrimination of multiple sources using a squid vector magnetometer. Biomag Proceedings. 99-100
  • [12] Thiel, F., et al. (2007). Demagnetization of magnetically shielded rooms, Rev. Sci. Instrum. 78. doi: 10.1063/1.2713433
  • [13] Schnabel, A., et al. (2008). Crucial parameters for better degaussing of magnetically shielded rooms. Biomag poster,
  • [14] http://www.vacuumschmelze.de/index.php?id=497, (January 2013)
  • [15] Burghoff, M., et al. (1999). A Vector Magnetometer Module for Biomagnetic Application. IEEE Appl. Superconductivity. 9. 4069-4072.
Uwagi
EN
This work is supported by the Federal Ministry of Education and Research, Bernstein Focus Neurotechnology, Project number 01GQ0852 and by the German Research Foundation (DFG), Project BU-1037/3-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f266a1a4-802c-4392-b2a6-a0871bec6cce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.