PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Maxwell and Cattaneo’s Time - Delay Ideas Applied to Shockwaves and the Rayleigh - Bénard Problem

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We apply Maxwell and Cattaneo’s relaxation approaches to the analysis of strong shockwaves in a two-dimensional viscous heat-conducting fluid. Good agreement results for reasonable values of Maxwell’s relaxation times. Instability results if the viscous relaxation time is too large. These relaxation terms have negligible effects on slower-paced subsonic problems, as is shown here for two-roll and four-roll Rayleigh-Bénard flow
Twórcy
autor
  • Department of Physics, Universidad Autónoma Metropolitana México City, México 09340
autor
  • Ruby Valley Research Institute, Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
autor
  • Ruby Valley Research Institute, Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
Bibliografia
  • [1] J.C. Maxwell, On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society of London 157, 49-88 (1867).
  • [2] M.C. Cattaneo, Sur une Forme de l’Équation de la Chaleur Éliminant le Paradoxe d’une Propagation Instantaneé, Comptes Rendus De L’Académie des Sciences-Series I-Mathematics 247, 431-433 (1958).
  • [3] D.D. Joseph and L. Preziosi, Heat Waves, Reviews of Modern Physics 61, 41-73 (1989).
  • [4] D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, Second Edition (Springer-Verlag, Berlin, 1993).
  • [5] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959). Chapter IX is devoted to shockwaves.
  • [6] R.E. Duff, W.H. Gust, E.B. Royce, M. Ross, A.C. Mitchell, R.N. Keeler, and W.G. Hoover, “Shockwave Studies in Condensed Media”, in Behavior of Dense Media under High Dynamic Pressures”, Proceedings of the 1967 Paris Conference, pages 397-406 (Gordon and Breach, New York, 1968).
  • [7] V.Y. Klimenko and A.N. Dremin, Structure of Shockwave Front in a Liquid, pages 79-83 in Detonatsiya, Chernogolovka (Akademia Nauk, Moscow, 1978).
  • [8] B.L. Holian,W.G. Hoover, B. Moran, and G.K. Straub, Shockwave Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Physical Review A 22, 2798-2808 (1980).
  • [9] O. Kum, Wm.G. Hoover, and C.G. Hoover, Temperature Maxima in Stable Two-Dimensional Shockwaves, Physical Review E 56, 462 (1997).
  • [10] Wm.G. Hoover and C.G. Hoover, Tensor Temperature and Shockwave Stability in a Strong Two-Dimensional Shockwave, Physical Review E 80, 011128 (2009).
  • [11] Wm.G. Hoover and C.G. Hoover, Well-Posed Two-Temperature Constitutive Equations for Stable Dense Fluid Shockwaves using Molecular Dynamics and Generalized Navier-Stokes-Fourier Continuum Mechanics, Physical Review E 81, 046302 (2010).
  • [12] Wm.G. Hoover and C.G. Hoover, Shockwaves and Local Hydrodynamics; Failure of the Navier-Stokes Equations, in New Trends in Statistical Physics – Festschrift in Honor of Leopoldo García-Colín’s 80th Birthday, A. Macias and L. Dagdug, Editors, pages 15-26 (World Scientific, Singapore, 2010). See arXiv:0909.2882 [physics.flu-dyn].
  • [13] Wm.G. Hoover, C.G. Hoover, and F.J. Uribe, Flexible Macroscopic Models for Dense-Fluid Shockwaves: Partitioning Heat and Work; Delaying Stress and Heat Flux; Two-Temperature Thermal Relaxation, Proceedings of the XXXVIII International Summer School-Conference: Advanced Problems in Mechanics (Saint Petersburg, Russia, July 2010), pages 261-273. See arXiv:1005.1525 [cond-mat.stat-mech].
  • [14] Wm.G. Hoover and C.G. Hoover, Three Lectures: NEMD, SPAM, and Shockwaves, 11th Granada Seminar at La Herradura, 13-17 September 2010. See arXiv:1008.4947 [condmat. stat-mech].
  • [15] B.L. Holian and M. Mareschal, Heat-Flow Equation Motivated by the Ideal-Gas Shockwave, Physical Review E 82, 026707 (2010). B.L. Holian, M. Mareschal, and R. Ravelo, “Burnett-Cattaneo Continuum Theory for Shockwaves”, Physical Review E 83, 026703 (2011).
  • [16] W.G. Hoover, Structure of a Shockwave Front in a Liquid, Physical Review Letters 42, 1531-1534 (1979).
  • [17] L.B. Lucy, A Numerical Approach to the Testing of the Fission Hypothesis, The Astronomical Journal 82, 1013-1024 (1977).
  • [18] Wm.G. Hoover, Smooth Particle Applied Mechanics – The State of the Art (World Scientific Publishers, Singapore, 2006)
  • [19] Wm.G. Hoover, Molecular Dynamics (Springer-Verlag, Berlin, 1986, available at the homepage http://williamhoover.info/MD.pdf).
  • [20] Wm.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991, available at the homepag http://williamhoover.info).e
  • [21] O. Kum, Wm.G. Hoover, and H.A. Posch, Viscous Conducting Flows with Smooth-Particle Applied Mechanics, Physical Review E 52, 4899-4908 (1995).
  • [22] V.M. Castillo, Wm.G. Hoover, and C.G. Hoover, Coexisting Attractors in Compressible Rayleigh-Bénard Flow, Physical Review E 55, 5546-5550 (1997).
  • [23] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1954).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2590aed-c414-491d-ad87-6ec689b9de23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.