PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bimetallic AZ91/AlSi17 samples were produced by compound casting. The casting process involved pouring the AZ91 magnesium alloy heated to 650ºC onto a solid AlSi17 aluminum alloy insert placed in a steel mould. Prior to casting, the mould with the insert inside was heated to about 370ºC. The bonding zone formed between AZ91 and AlSi17 had a thickness of about 200 μm; it was characterized by a non-homogeneous microstructure. Two different areas were distinguished in this zone: the area adjacent to the AZ91 and the area close to the AlSi17. In the area closest to the AZ91 alloy, a eutectic composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg was observed. In bonding zone at a certain distance from the AZ91 alloy an Mg2Si phase co-occurred with the eutectic. In the area adjacent to the AlSi17 alloy, the structure consisted of Al3Mg2, Mg17Al12 and Mg2Si. The fine Mg2Si phase particles were distributed over the entire Mg-Al intermetallic phase matrix. The microhardness of the bonding zone was much higher than those of the materials joined; the microhardness values were in the range 203-298 HV. The shear strength of the AZ91/AlSi17 joint varied from 32.5 to 36 MPa.
Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Kielce, Poland
autor
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • [1] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Alloys and Compounds. 336(1-2), 88-113.
  • [2] Ignat, S., Sallamand, P., Grevey, D. & Lambertin, M. (2004). Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Applied Surface Science. 225(1), 124-134.
  • [3] Singh, A. & Harimkar, S.P. (2012). Laser surface engineering of magnesium alloys: a review. JOM. 64(6), 716-733.
  • [4] Dziadoń, A., Mola, R. & Błaż, L. (2016). The microstructure of the surface layer of magnesium laser alloyed with aluminium and silicon. Materials Characterization. 118, 505-513.
  • [5] Shigematsu, M., Nakamura, M., Saitou, K. & Shimojima, K. (2000). Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letter. 19(6), 473-475.
  • [6] Mola, R. (2015). The properties of Mg protected by Al- and Al/Zn-enriched layers containing intermetallic phases. Journal Materials Research. 30(23), 3682-3691.
  • [7] Taha, M.A., El-Mahallawy, N.A., Hammouda, R.M. & Nassef, S.I. (2010). PVD Coating of Mg-AZ31 by thin layer of Al and Al-Si. Journal of Coatings Technology and Research. 7(6), 793-800.
  • [8] Zhu, B., Liang, W. & Li, X. (2011). Interfacial microstructure, bonding strength and fracture of magnesium-aluminium laminated composite plates fabricated by direct hot pressing. Materials Science and Engineering: A. 528(21), 6584-6588.
  • [9] Zhang, X.P., Yang, T.H., Castagne, S. & Wang, J.T. (2011). Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Materials Science and Engineering: A. 528(4), 1954-1960.
  • [10] Wierzba, A., Mróz, S., Szota, P., Stefanik, A. & Mola, R. (2015). The influence of the asymmetric ARB process on the properties of Al-Mg-Al multi-layer sheets. Archives of Metallurgy and Materials. 60(4), 2821-2825.
  • [11] Liu, X.B., Chen, R.S. & Han, E.H. (2009). Preliminary investigation on the Mg-Al-Zn/Al laminated composite fabricated by equal channel angular extrusion. J. Mater. Process. Tech. 209(10), 4675-4681.
  • [12] Binotsch, C., Nickel, D., Feuerhack, A. & Awiszus, B. (2014). Forging of Al-Mg compounds and characterization of interface. Procedia Engineering. 81, 540-545.
  • [13] Mróz, S., Stradomski, G., Dyja, H. & Galka, A. (2015). Using the explosive cladding method for production of Mg-Al bimetallic bars. Archives of Civil and Mechanical Engineering. 15(2), 317-323.
  • [14] Bae, J.H., Prasada Rao, A.K., Kim, K.H. & Kim, N.J. (2011). Cladding of Mg alloy with Al by twin-roll casting. Scripta Materialia. 64(9), 836-839.
  • [15] Wróbel, T. & Szajnar, J. (2015). Bimetallic casting: ferritic stainless steel-grey cast iron. Archives of Metallurgy and Materials. 60(3), 2361-2365.
  • [16] Wróbel, T., Cholewa, M. & Tenerowicz, S. (2011). Bimetallic layered castings alloy steel – carbon cast steel. Archives of Foundry Engineering. 11(1), 105-108.
  • [17] Szymczak, T. (2011). The influence of selected technological factors on the quality of bimetallic castings alloy steel-silumin. Archives of Foundry Engineering 11(3), 215-226.
  • [18] Papis, K.J.M., Loeffler, J.F. & Uggowitzer, P.J. (2009). Light metal compound casting. Science in China Series E: Technological Sciences. 52(1), 46-51.
  • [19] Hajjari, E., Divandari, M., Razavi, S.H., Homma, T. & Kamado, S. (2012). Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics. 23, 182-186.
  • [20] Emami, S.M., Divandari, M., Arabi, H. & Hajjari, E. (2013). Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding. Journal of Materials Engineering and Performance. 22(1), 123-130.
  • [21] Mola, R., Bucki, T. & Dziadoń, A. (2016). Formation of Al-alloyed layer on magnesium with use of casting techniques. Archives of Foundry Engineering. 16(1), 112-116.
  • [22] Mola, R., Bucki, T. & Dziadoń, A. (2017). Effects of the pouring temperature on the formation of the bonding zone between AZ91 and AlSi17 in the compound casting process. IOP Conference Series: Materials Science and Engineering. 179(1), 1-6.
  • [23] Mola, R., Bucki, T. & Dziadoń, A. (2017). Microstructure of the bonding zone between AZ91 and AlSi17 formed by compound casting. Archives of Foundry Engineering. 17(1), 202-206.
  • [24] Crystallographic and Thermodynamic Data of Binary Alloys, Landolt-Börstein New Series, Group IV, Springer-Verlag Berlin 1998.
  • [25] Tang, Y., Du, Y., Zhang, L., Yuan, X. & Kaptay, G. (2012). Thermodynamic description of the Al-Mg-Si system using a new formulation for the temperature dependence of the excess Gibbs energy. Thermochim. Acta. 527, 131-142.
  • [26] Westbrook, J.H. & Fleischer, R.L. (2000). Structural applications of intermetallic compounds. John Willey& Sons.
  • [27] Hayat, F. (2011). The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials. Materials & Design. 32(4), 2476-2484.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2581460-0ccb-4f39-be91-b5a4920ce96a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.