PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biotechnologiczne zastosowanie ekstremozymów pozyskiwanych z archeonów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biotechnological applications of archaeal extremozymes
Języki publikacji
PL EN
Abstrakty
PL
Wiele gatunków archeonów występuje w środowiskach ekstremalnych. Do tej grupy drobnoustrojów można zaliczyć hipertermofile, termofile metabolizujące związki siarki, ekstremalne halofile oraz metanogeny. Ze względu na specyficzne właściwości i zdolność do produkcji ekstremozymów, mikroorganizmy te są potencjalnie cennym źródłem dla rozwoju nowoczesnych procesów biotechnologicznych.
EN
Many archaea occur in extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties and specific extremozymes, they are a potentially valuable resource in the development of novel biotechnological processes.
Słowa kluczowe
Czasopismo
Rocznik
Strony
710--722
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice
Bibliografia
  • 1. Woese C.R., Kandler O., Wheelis M.L.: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 1990, 87, 12, 4576–4579.
  • 2. Corcelli A., Lobasso S.: Characterization of lipids of halophilic Archaea. In: Rainey A.F., Oren A., editors. Methods in Microbiology – Extremophiles. Amsterdam Elsevier 2006, 35, 585–613.
  • 3. Woese C.R.: Archaebacteria. Scientific American 1981, 7, 98–122.
  • 4. Karło A., Ziembińska A.: Nowoczesne metody badania bioróżnorodności biocenoz bakteryjnych w środowisku. CHEMIK 2013, 67, 11, 1105–1114.
  • 5. Bates S.T., Berg-Lyons D., Gregory Caporaso J.G., Walters W.A., Knight R., Fierer N.: Examining the global distribution of dominant archaeal populations in soil. The ISME Journal 2011, 5, 5, 908–917.
  • 6. Clementino M.M., Fernandes C.C., Vieira R.P., Cardoso A.M., Polycarpo C.R., Martins O.B.: Archaeal diversity in naturally occurring and impacted environments from a tropical region. Journal of Applied Microbiology 2007, 103, 1, 141–151.
  • 7. Vieira R.P., Clementino M.M., Cardoso A.M., Oliveira D.N., Albano R.M., Gonzalez A.M., Paranhos R., Martins O.B.: Archaeal communities in a tropical estuarine ecosystem: Guanabara Bay. Microbial Ecology 2007, 54, 3, 460–468.
  • 8. Marusenko Y., Bates S.T., Anderson I., Johnson S.L., Soule T., Garcia-Pichel F.: Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecological Processes 2013, 2, 9, 1–9.
  • 9. Schiraldi Ch., Giuliano M., De Rosa M.: Perspectives on biotechnological applications of archaea. Archaea 2002, 1, 2, 75–86.
  • 10. Alqueres S.M.C., Almeida R.V., Clementino M.M., Vieira R.P., Almeida W.I., Cardoso A.M., Martins O.B.: Exploring the biotechnological applications in the archeal domain. Brazil Journal of Microbiology 2007, 38, 398–405.
  • 11. Ng S.Y., Zolghadr B., Driessen A.J., Albers S.V., Jarrell K.F.: Cell surface structures of archaea. Journal of Bacteriology 2008, 190, 18, 6039–6047.
  • 12. Jarrell K.F., Walters A.D., Bochiwal Ch., Borgia J.M., Dickinson T., Chong J.P.J.: Major players on the microbial stage: why archaea are important. Microbiology 2011, 157, 919–936.
  • 13. Gribaldo S., Brochier-Armanet C.: The origin and evolution of Archaea: a state of the art. Phil. Trans. R. Soc. B 2006, 361, 1007–1022.
  • 14. DeLong E.F.: Oceans of Archaea. ASM News 2003, 69, 10, 503–511.
  • 15. Lepp P.W., Brinig M.M., Ouverney C.C., Palm K., Armitage G.C., Relman D.A.: Methanogenic Archaea and human periodontal disease. Proceedings of the National Academy of Sciences USA 2004, 101, 6176–6181.
  • 16. Robertson Ch.E., Harris J.K., Spear J.R., Pace N.R.: Phylogenetic diversity and ecology of environmental Archaea. Current Opinion in Microbiology 2005, 8, 638–642.
  • 17. Gomes J., Steiner W.: The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology 2004, 42, 4, 223–235.
  • 18. Demirijan D.C., Moris-Varas F., Cassidy C.S.: Enzymes from extremophiles. Current Opinion in Chemical Biology 2001, 5, 144–151.
  • 19. Benvegnu T., Lemiègre L., Cammas-Marion S.: New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Patents on Drug Delivery and Formulation 2009, 3, 3, 206–220.
  • 20. Sleytr U.B., Sara M.: Bacterial and archaeal S-layer proteins: structurefunction relationships and their biotechnological applications. Trends in Biotechnology 1997, 15, 1, 20–26.
  • 21. Hermann-Krauss C., Koller M., Muhr A., Fasl H., Stelzer F., Braunegg G.: Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industry-derived by-products. Archaea 2013, 2013, 1–10.
  • 22. Hedderich H., Whitman W.B.: Physiology and biochemistry of the methane-producing Archaea. The Prokaryotes 2006, 2006, 1050–1079.
  • 23. Rohwerder T., Sand W.: Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Engineering in Life Sciences 2007, 7, 4, 301–309.
  • 24. Egorova K., Antranikian G.: Industrial revelance of thermophilic Archaea. Current Opinion in Microbiology 2005, 8, 649–655.
  • 25. Eichler J.: Biotechnological uses of archaeal extremozymes. Biotechnology advances 2001, 19, 261–278.
  • 26. Antranikian G., Vorgias C.E., Bertoldo C.: Extreme environments as a resource for microorganisms and novel biocatalysts. Marine Biotechnology I – Advances in Biochemical Engineering/Biotechnology 2005, 96, 219–262.
  • 27. Dabrowski S., Maciuńska J., Synowiecki J.: Cloning and nucleotide sequence of the thermostable beta-galactosidase gene from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme. Molecular Biotechnology 1998, 10, 3, 217–222.
  • 28. Oksanen K.K., Paavilainen P.J., Buchert J., Viikari L.: Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. Journal of Biotechnology 2000, 78, 39–48.
  • 29. Andrade C.M., Aguiar W.B., Antranikian G.: Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Applied Biochemistry and Biotechnology 2001, 91, 93, 655–669.
  • 30. Andronopoulou E., Vorgias C.E.: Isolation, cloning, and overexpression of a chitinase gene fragment from the hyperthermophilic archaeon Thermococcus chitonophagus: semi-denaturing purification of the recombinant peptide and investigation of its relation with other chitinases. Protein Expression and Purification 2004, 35, 264–271.
  • 31. Imanaka T., Fukui T., Fujiwara S.: Chitinase from Thermococcus kodakaraensis KOD1. Methods in Enzymology 2001, 330, 319–329.
  • 32. Tanaka T., Fujiwara S., Nishikori S., Fukui T., Takagi M., Imanaka T.: A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Applied and Environmental Microbiology 1999, 65, 5338–5344.
  • 33. Gao J., Bauer M.W., Shockley K.R., Pysz M.A., Kelly R.M.: Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Applied and Environmental Microbiology 2003, 69, 3119–3128.
  • 34. Canganella F., Wiegel J.: Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011, 98, 253–279.
  • 35. Cavicchioli R., Siddiqui K.S., Andrews D., Sowers K.R.: Low-temperature extremophiles and their applications. Current Opinion in Biotechnology 2002, 13, 253–261.
  • 36. Cabello P., Roldán M.D., Moreno-Vivián C.: Nitrate reduction and the nitrogen cycle in archaea. Microbiology 2004, 11, 3527–3546.
  • 37. Litchfield C.D.: Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology 2011, 38, 10, 1635–1647.
  • 38. Brierley J.A.: A perspective on developments in biohydrometallurgy. Hydrometallurgy 2008, 94, 2–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f257212a-8b11-4851-b351-4f34912539cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.