Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knowledge of the catchment area is essential for hydrological analyses. With it, it is possible to determine the water flow rate at the cross-section enclosing it. Nowadays, measurement is possible thanks to computer techniques that continue to develop in order to determine its area in the most effective way, i.e. as quickly and precisely as possible. The aim of this paper was to investigate the differences in the resulting catchment areas based on the Digital Elevation Model at different resolutions. One method of calculating catchment areas using the QGIS software and its tools is presented, using the example of a section of the Nysa Kłodzka River and its tributaries. The results were compared to plots made available by IMGW, which were treated as baseline data. Attention was paid to what could cause differences in the results obtained and which model would work best for which case.
Czasopismo
Rocznik
Tom
Strony
285--300
Opis fizyczny
Bibliogr. 24 poz., il., tab.
Twórcy
autor
- University of Science and Technology, Department of Geotechnology, Hydro Technology, and Underground and Hydro Engineering, Wrocław, Poland
Bibliografia
- 1. Bajkiewicz-Grabowska, E and Mikulski, Z 1999. Hydrologia ogólna [General hydrology]. Warszawa: Wydawnictwo Naukowe PWN.
- 2. Langbein, WB and Iseri, KT 1960, General introduction and hydrologic definitions. Washington: US Government Printing Office.
- 3. De Graff, JV 2018. Catchment. In: Bobrowsky, PT, Marker, B (eds) Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series. Berlin: Springer, 106-107.
- 4. Główny Geodeta Kraju, 2005. Wytyczne Techniczne GIS-3. Mapa hydrograficzna Polski skala 1:50000 w formie analogowej i numerycznej [GIS Technical Guidance Document – 3. Hydrographic Map of Poland. Scale 1: 50 000 in analogue and numerical form.]. Warszawa: Główny Urząd Geodezji i Kartografii.
- 5. https://www.geoportal.gov.pl, accesed: 11.03.2024-09.08.2024.
- 6. Guth, PL, Van Niekerk, A, Grohmann, CH, Muller, J P, Hawker, L, Florinsky, IV, ... & Strobl, P. 2021. Digital elevation models: Terminology and definitions. Remote Sensing, 13(18), 3581.
- 7. Moore, ID, Grayson, RB and Ladson, AR 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30.
- 8. Croneborg, L, Saito, K, Matera, M, McKeown, D, van Aardt, J 2020. Digital elevation models: A guidance note on how digital elevation models are created and used-includes key definitions, sample terms of reference, and how best to plan a DEM-mission. Washington DC: World Bank.
- 9. https://hydro.imgw.pl/, accesed: 11.03.2024-09.08.2024.
- 10. Kondracki, J 2001, Geografia regionalna Polski [Regional geography of Poland]. Warszawa: Wydawnictwo Naukowe PWN
- 11. Staffa, M 1994. Kotlina Kłodzka [i Rów Górnej Nysy][ Kłodzko Basin [and Rów Górnej Nysy]]. Wrocław: IBIS.
- 12. https://www.wody.gov.pl/aktualnosci/3451-kolejna-wersja-wtyczki-qgis-wod-polskich-gotowa do-pobrania, accesed: 11.03.2024-09.08.2024
- 13. Romero-Zaliz, R and Reinoso-Gordo, JF 2018. An updated review on watershed algorithms. Soft computing for sustainability science, 235-258.
- 14. Wichmann, V 2007. SAGA-GIS Module Library Documentation (v2.1.3). Module Fill Sinks (Wang & Liu).
- 15. Kamboj, V, Kamboj, N and Sharma, AK 2020. A review on general characteristics, classification and degradation of river systems. Environmental degradation: Causes and remediation strategies 1, 47-62.
- 16. O'Callaghan, JF and Mark, DM 1984. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing 28(3), 323-344.
- 17. Tarboton, DG 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research, 33(2), 309-319.
- 18. Van Zyl, JJ 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta astronautica, 48(5-12), 559-565
- 19. https://www.earthdata.nasa.gov/sensors/srtm, accesed: 01.07.2024-31.07.2024.
- 20. Zhang, W and Montgomery, DR 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water resources research, 30(4), 1019-1028.
- 21. Chormański J. et al., eds. Podręcznik dla uczestników szkolenia: wykorzystanie kartograficznych opracowań tematycznych w postaci cyfrowych map hydrograficznych opracowanych w ramach Projektu enviDMS. Główny Urząd Geodezji i Kartografii, 2017.
- 22. Paszotta, Z and Szumiło, M 2006. Źródła błędów numerycznego modelu terenu pozyskanego metodami fotogrametrycznymi [Sources of error in the digital elevation model obtained by photogrammetric methods] Geodesy, cartography and aerial photography 67.
- 23. Haase D and Frotscher K 2005. Topography data harmonisation and uncertainties applying SRTM, laser scanner and cartographic elevation models. Advances in Geosciences, 5, 65-73.
- 24. https://www.usgs.gov/, accesed:28.01.2025.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2504a03-e5ef-470e-bb71-4aec5a9396ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.