PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Trends in Substrates and Biogas Systems in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The amendment to the Polish Renewable Energy Act creates great opportunities for the development of the biogas market in Poland. Years of experience in biogas production in Western Europe and the development of biogas installations in Poland indicate the requirement to look for alternative substrates to those produced from dedicated crop production (mainly maize silage). Feasible solutions include the use of biodegradable waste from agriculture or industry as well as municipal landfill sites. The usage of these substrates in the methane fermentation process offers low cost, high biogas production and the safe management of biowaste. The arguments for using them in biogas installations are persuasive. This article presents new approaches of biogas plant installation solutions which allows for the effective fermentation of biowaste from animal and vegetable production, from the agro-food industry and from municipal waste.
Rocznik
Strony
19--25
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Poznan University of Life Sciences, Institute of Biosystems Engineering, Wojska Polskiego 28, 60-637 Poznan, Poland
autor
  • Poznan University of Life Sciences, Institute of Biosystems Engineering, Wojska Polskiego 28, 60-637 Poznan, Poland
  • University Castilla-La Mancha, Chemical Engineering Department, Avda. Camilo Jose Cela S/N 13071, Ciudad Real, Spain
  • Poznan University of Life Sciences, Institute of Biosystems Engineering, Wojska Polskiego 28, 60-637 Poznan, Poland
  • University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, Leszczyńskiego 7, 20-069 Lublin, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Borowski, S., Boniecki, P., Kubacki, P., Czyżowska,A. 2018. Food waste co-digestion with slaughterhouse waste and sewage sludge: Digestate conditioning and supernatant quality. Waste Management, 74, 158–167. doi:10.1016/j.wasman.2017.12.010.
  • 2. Brunia E, Jensen AP, Angelidaki I. 2010. Comparative study of mechanical,hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresource Technology, 101(22), 8713–8717. doi:10.1016/j.biortech.2010.06.108.
  • 3. Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., Jóźwiakowski K. 2016. Methane fermentation of the maize straw silage under mesoand thermophilic conditions. Energy, 115(2), 1495–1502. doi:10.1016/j.energy.2016.06.070.
  • 4. Czekała W., Lewicki A., Pochwatka P., Czekała A., Wojcieszak D., Jóźwiakowski K., Waliszewska H. 2020. Digestate management in polish farms as an element of the nutrient cycle. Journal of Cleaner Production, 242, 118454. doi: 10.1016/j.jclepro.2019.118454.
  • 5. Czekała W., Bartnikowska S., Dach J., Janczak D., Smurzyńska A., Kozłowski K., Bugała A., Lewicki A., Cieślik M., Typańska D., Mazurkiewicz J. 2018a. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122.doi: 10.1016/j.energy.2018.06.090.
  • 6. Czekała W. 2018b. Agricultural biogas plants as a chance for the development of the agri-food sector. Journal of Ecological Engineering, vol. 19 (2), 179–183, doi:10.12911/22998993/83563.
  • 7. Dach J., Czekała W., Kowalczyk-Juśko A., Mazurkiewicz J., Pochwatka P., Lewicki A., Janczak D. 2019. Energetic efficiency analysis of the agricultural biogas plant working as peak installation. Proceedings of the 4th International Conference on Energy & Environment (ICEE 2019): Bringing Together Engineering and Economics, 604–608.
  • 8. Deng L., Li Y., Chen Z., Liu G., Yang H. 2014. Separation of swine slurry into different concentration fractions and its influence on biogas fermentation. Applied Energy, 114, 504–511. doi:10.1016/j.apenergy.2013.10.018.
  • 9. Eder B., Schulz H. 2006. Biogas-Praxis: Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkait. Ökobuch, (in German).
  • 10. EEG 2017, The Renewable Energy Sources Act [Online]. Available: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sourcesact-2017. (Accessed: 01-Jan-2020).
  • 11. Furlan C., Mortarino C. 2018. Forecasting the impact of renewable energies in competition with non-renewable sources. Renewable and Sustainable Energy Reviews, 81, 1879–1886. doi:10.1016/j.rser.2017.05.284.
  • 12. Frac, M., Ziemiński, K. 2012. Methane fermentation process for utilization of organic waste. International Agrophysics, 26, 317–330. doi:10.2478/v10247–012–0045–3.
  • 13. Igliński, B., Buczkowski, R., Cichosz, M. 2015. Biogas production in Poland–Current state, potential and perspectives. Renewable and Sustainable Energy Reviews, 50, 686–695. doi:10.1016/j.rser.2015.05.013.
  • 14. Li R., Duan N., Zhang Y., Liu Z., Li B., Zhang D., Lu H., Dong T. 2017. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management 70, 247–254. doi:10.1016/j.wasman.2017.09.016.
  • 15. Lindmark J., Thorin E., Bel Fdhila R., Dahlquist E. 2014. Effects of mixing on the result of anaerobic digestion. Renewable and Sustainable Energy Reviews, 40, 1030–1047.doi: 10.1016/j.rser.2014.07.182.
  • 16. Lindmark J., Leksell N., Schnurer A., Thorin E. 2012. Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Applied Energy, 97, 498–502. doi:10.1016/j.apenergy.2011.12.066.
  • 17. Maj G., Krzaczek A., Kuranc A., Piekarski W. 2017. Energy properties of sunflower seed husk as industrial extrusion residue. Agricultural Engineering, vol. 21 (1), 77–84. doi:10.1515/agriceng-2017–0008.
  • 18. Marks S., Jeżowska A., Kozłowski K., Dach J., Wilk B., Fudala-Książek S. 2017. Review of mixing systems of fermentation liquid used in biogas plants. Technika Rolnicza Ogrodnicza Leśna, 6, 24–26 (in Polish).
  • 19. Mazurkiewicz J., Marczuk A., Pochwatka P., Kujawa S. 2019. Maize Straw as a Valuable Energetic Material for Biogas Plant Feeding. Materials 12, 3848. doi:10.3390/ma12233848.
  • 20. Moukazis I., Pellera F. M., Gidarakos E. 2018. Slaughterhouse by-products treatment using anaerobic digestion. Waste Management 71, 652–662. doi:10.1016/j.wasman.2017.07.009.
  • 21. Nghiem L.D., Koch K., Bolzonella D., Drewes J.E. 2017.Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renewable and Sustainable Energy Reviews, 72, 354–362. doi:10.1016/j.rser.2017.01.062.
  • 22. Pagés-Díaz J., Pereda-Reyes I., Taherzadeh M.J., Sárvári-Horváth I., Lundin M. 2014. Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 245, 89–98. doi:10.1016/j.cej.2014.02.008.
  • 23. Piwowar A., Dzikuć M., Adamczyk J. 2016. Agricultural biogas plants in Poland – selected technological, market and environmental aspects. Renewable and Sustainable Energy Reviews,58, 69–74. doi:10.1016/j.rser.2015.12.153.
  • 24. Prochnow A., Heiermann M., Plöchl M., Linke B., Idler C., Amon T., Hobbs P.J. 2009. Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology, 100(21), 4931–4944. doi:10.1016/j.biortech.2009.05.070.
  • 25. Rajaeifar M.A., Sadeghzadeh Hemayati S., Tabatabaei M., Aghbashlo M., Mahmoudi S.B. 2019. A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. Renewable and Sustainable Energy Reviews, 103, 423–442. doi:10.1016/j.rser.2018.12.056.
  • 26. Regulation of the Minister of Economy of 16 July 2015 on the admission of waste for landfill. Journal of Laws, 2015, item 1277 (in Polish).
  • 27. Satjaritanun P., Khunatorn Y., Vorayos N., Shimpalee S., Bringley E. 2016. Numerical analysis of the mixing characteristic for napier grass in the continuous stirring tank reactor for biogas production. Biomass and Bioenergy, 86, 53–64. doi:10.1016/j. biombioe.2016.01.018.
  • 28. Scarlat N., Dallemand J.F., Fahl F. 2018. Biogas: Developments and perspectives in Europe. Renewable Energy, vol. 129, 457–472. doi:10.1016/j. renene.2018.03.006.
  • 29. Smurzyńska A., Dach J., Kozłowski K., Mazurkiewicz J., Woźniak E., Boniecki P., Kupryaniuk K., Janczak D., Brzoski M. 2017.Relevant biogas substrate – maize silage vs slaughterhouse waste. Proceedings of the 8th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, HAICTA 2017, Chania, Greece.
  • 30. Sousa G., Fangueiro D., Duarte E., Vasconcelos E. 2011. Reuse of treated wastewater and sewage sludge for fertilization and irrigation. Water Science Technology, 64 (4), 871–879. doi:10.2166/wst.2011.658.
  • 31. Vega G.C.C., ten Hoeve M., Birkved M., Sommer S.G., Bruun S. 2014.Choosing co-substrates to supplement biogas production from animal slurry – A life cycle assessment of the environmental consequences. Bioresource Technology, 171, 410–420 doi:10.1016/j.biortech.2014.08.099.
  • 32. Wandera S.M., Qiao W., Algapani D.E., Bi S., Yin D., Qi X., Liu Y., Dach J., Dong R. 2018. Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy, 116 (A), 720–727. doi:10.1016/j.renene.2017.09.087.
  • 33. Ward A.J., Hobbs P.J., Holliman P.J., Jones D.J. 2008.Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940. doi:10.1016/j.biortech.2008.02.044.
  • 34. Wu L.J., Kobayashi T., Kuramochi H., Li Y.Y., Xu K.Q. 2016. Improved biogas production from food waste by co-digestion with de-oiled grease trap waste. Bioresource Technology, 201, 237–244. doi:10.1016/j.biortech.2015.11.061.
  • 35. Zhang C., Su H., Baeyes J., Tan T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. doi:10.1016/j.rser.2014.05.038.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f24fa969-95bd-4e60-91dc-048de1321ad4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.