PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Refractive index matched half-wave plate with a nematic liquid crystal for three-dimensional laser metrology applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There exists a need in a quality and accuracy of a three-dimensional laser metrology operating in numerically controlled automatic machines. For this purpose, one sends three laser beams mutually perpendicular. These three beams of the wavelength λ = 0.6328 μm are generated by the same laser and are directed along three independent, orthogonal, mutually perpendicular, optical paths with a given light polarization plain. Using these beams, constituting the frame of coordinates, three independent laser rangefinders are able to determine spatial coordinates of a working tool or a work piece. To form these optical pulses, a special refractive index matched Half-Wave Plate with nematic Liquid Crystal (LCHWP) was applied. The presented half-wave plate is based on a single Twisted Nematic (TN) cell (with the twist angle φ = π/2) of a rather high cell gap d ~15 μm filled with a newly developed High-Birefringence Nematic Liquid Crystal Mixture (HBLCM) of optical anisotropy as high as ∆n ~0.40 at λ = 0.6328 μm, where the Mauguin limit above 5.00 ~ ∆nd >> λ/2 = 0.32 is fulfilled.
Twórcy
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • University of Technology and Humanities in Radom (UTH) 26-600 Radom, Poland
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Nanyang Technological University (NTU), 639798 Singapore
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Military University of Technology (MUT), 00-908 Warsaw, Poland
autor
  • Wrocław University of Technology (WUT), 50-370 Wroclaw, Poland
Bibliografia
  • 1. S.D. Jacobs, K.A. Cerqua, K.L. Marshall, A. Schmid, M.J. Guardalben, and K.J. Skerrett, “Liquid-crystal laser optics – design, fabrication, and performance”, J. Opt. Soc. Am. B5, 1962–1979 (1988).
  • 2. H.L. Ong, “Optical properties of general twisted nematic liquid crystal displays”, Appl. Phys. Lett. 51, 1398–400 (1987).
  • 3. C.H. Gooch and H.A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤ 90 degrees”, J. Phys. D: Appl. Phys. 8, 1575 (1975).
  • 4. E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z. Raszewski, L. Soms, W. Piecek, P. Perkowski, J. Kędzierski, R. Dąbrowski, M. Olifierczuk, K. Garbat, and E. Miszczyk, “Liquid crystal cell for space-borne laser rangefinder to space mission applications”, Opto-Electron. Rev. 20, 315–322 (2012).
  • 5. R. Dąbrowski, J. Dziaduszek and T. Szczuciński, “Mesomorphic characteristics of some new homologous series with the isothiocyanato terminal group”, Mol. Cryst. Liq. Cryst. 124, 241–257 (1985).
  • 6. A. Spadło, R. Dąbrowski, M. Filipowicz, Z. Stolarz, J. Przedmojski, S. Gauza, C. Y. H. Fan, and S-T. Wu, “Synthesis, mesomorphic and optical properties of isothiocyanatotolanes”, Liq. Cryst. 30, 191–198 (2003).
  • 7. R. Dabrowski, J. Dziaduszek, A. Ziolek, L. Szczucinski, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S.T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures”, Opto-Electron. Rev. 15, 47–51 (2007).
  • 8. S. Gauza, C-H. Wen, B. Wu, S-T. Wu, A. Spadło, and R. Dabrowski, “High figure-of-merit nematic mixtures based on totally unsaturated isothiocyanate liquid crystals”, Liq. Cryst. 33, 705–710 (2006).
  • 9. R. Dąbrowski, J. Dziaduszek, K. Garbat, M. Filipowicz, S. Urban, S. Gauza, and G. Sasnouski, „Synthesis and mesogenic properties of three- and four-ring compounds with a fluoroisothiocyanatobiphenyl moiety”, Liq. Cryst. 37, 1529–37 (2010).
  • 10. E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, R. Dabrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, M. Sutkowski, K. Ogrodnik, P. Morawiak, and E. Miszczyk,“Highbirefringence liquid crystal mixtures for electro-optical devices”, Opt. Appl. 42, 167–180 (2012).
  • 11. M. Domon and J. Billard, “Predictions of Phase Diagrams for Certain Liquid Crystalline Mixtures”, Pramana. 1, 131 (1975).
  • 12. Z. Raszewski, E. Kruszelnicki-Nowinowski, J. Kędzierski, P. Perkowski, W. Piecek, R. Dąbrowski, P. Morawiak, and K. Ogrodnik, “Electrically tunable liquid crystal filters”, Mol. Cryst. Liq. Cryst. 525, 112–127 (2010).
  • 13. Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnicki, P. Perkowski, J. Kędzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell”, J. Appl. Phys. 114, 053104 (2013).
  • 14. Z. Raszewski, W. Piecek, L. Jaroszewicz, E. Nowinowski-Kruszelnicki, P. Perkowski, L. Soms, R. Dąbrowski, J. Kędzierski, M. Olifierczuk, M. Mrukiewicz, E. Miszczyk, P. Morawiak, R. Mazur, and K. Kowiorski, “High Birefringence Liquid Crystals Mixtures and Their Selected Applications”, Adv. Mat. Res. 909, 12–18 (2014).
  • 15. Z. Raszewski, W. Piecek, L. Jaroszewicz, R. Dąbrowski, E. Nowinowski-Kruszelnicki, L. Soms, M. Olifierczuk, J. Kędzierski, P. Morawiak, R. Mazur, E. Miszczyk, M. Mrukiewicz, and K. Kowiorski, “Transparent laser damage resistant nematic liquid crystal cell “LCNP3”, Opto-Electron. Rev. 22, 196–200 (2014).
  • 16. Z. Raszewski, “Measurement of Permittivity of Liquid-Crystalline Substances”, Electron Technology 20, 99–113 (1987).
  • 17. P. Perkowski, “Dielectric spectroscopy of liquid crystals. Theoretical model of ITO electrodes influence on dielectric measurements”, Opto-Electron. Rev. 17, 180–186 (2009).
  • 18. J. Kedzierski, Z. Raszewski, M.A. Kojdecki, E. Kruszelnicki-Nowinowski, P. Perkowski, W. Piecek, E. Miszczyk, J. Zieliński, P. Morawiak, and K. Ogrodnik, “Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells”, Opto-Electron. Rev. 18, 214–218 (2010).
  • 19. E. Miszczyk, Z. Raszewski, J. Kędzierski, E. Nowinowski-Kruszelnicki, M.A. Kojdecki, P. Perkowski, W. Piecek, and M. Olifierczuk, “Interference method for determining dispersion of refractive indices of liquid crystals”, Mol. Cryst. Liq. Cryst. 544, 22–36 (2011).
  • 20. J. Kędzierski, M.A. Kojdecki, Z. Raszewski, J. Zieliński, and L. Lipińska, “Determination of anchoring energy, diamagnetic susceptibility anisotropy, and elasticity of some nematics by means of semiempirical method of self-consistent director field”, Proc. SPIE 6023, 26–40 (2005).
  • 21. J. Kędzierski, M.A. Kojdecki, Z. Raszewski, P. Perkowski, J. Rutkowska, W. Piecek, L. Lipińska, and E. Miszczyk,“Composite method for determination of liquid crystal material parameters”, Mol. Cryst. Liq. Cryst. 352, 77–84 (2000).
  • 22. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices”, J. Appl. Phys. 96, 19–24 (2004).
  • 23. J. Li and S.-T. Wu, “Extended Cauchy equations for the reractive inices of liquid crystals”, J. Appl. Phys. 95, 896–901 (2004).
  • 24. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals”, J. Appl. Phys. 97, 73501 (2005).
  • 25. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications”, J. Display Technol. 1, 51 (2005).
  • 26. S.-T. Wu, U. Efron, and L.D. Hess, “Birefringence measurements of liquid crystals”, Appl. Opt. 23, 3911 (1984).
  • 27. K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid-crystals”, Jpn. J. Appl. Phys. 31, 2829-2836 (1992).
  • 28. H. Hirschmann, V. Reiffenrath, D. Demus, J. Goodby, G.W. Gray, H-W. Spiess, and V. Vill, “Applications, TN, STN Displays”, in Handbookof Liquid Crystals Set, Wiley-VCH Verlag GmbH, Weinheim, Germany, 199–229, 1998.
  • 29. S.-T. Wu, A.M. Lackner, and U. Efron, “Optimal operation temperature of liquid crystal modulators”, Appl. Opt. 26, 3441 (1987).
  • 30. J. D. Ingle and S.R. Crouch, in Spectrochemical Analysis, Prentice Hall, New York, 1988.
  • 31. X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, and E.F. Schubert, “Refractive-index-matched Indium-Tin-Oxide electrodes for liquid crystal displays”, Jpn. J. Appl. Phys. 48, 120203 (2009).
  • 32. Quarzglas für die Optik, Daten und Eigenschaften in: Hearaeus (2009) (IN GERMAN).
  • 33. M. Born and E. Wolf, in Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, New York, 1999.
  • 34. R. Ditchburn, in Light, Dover Publications, New York, 2011.
  • 35. M. Pluta, in Advanced Light Microscopy, North Holland, New York, 1993
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2487468-e3d6-4408-b3a8-2186c3b2e459
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.