PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental assessment of solar cell materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today’s world, fossil fuels, including coal, oil, and gas, are the primary energy sources from which electricity is obtained. As they are exhaustible and their exploitation has a negative impact on the natural environment, they should be, at least partially, replaced by renewable energy sources. The implementation of this goal depends on a number of factors, including social and political, the existence of investment support programmes, and the need to lower electricity prices and ensuring energy security. One of these sources is solar energy. Each year, the Earth receives around 1 ∙ 1018 kWh of solar energy, which is more than 1000 times the current global energy demand. This is therefore a vast source of energy that can be tapped to satisfy human energy requirements. The use of solar energy releases no CO2, SO2, or NO2 gases, and does not contribute to global warming. Photovoltaics is one of the technologies that makes it possible to generate electricity in an environmentally friendly manner. By using the energy of solar radiation, a photovoltaic cell converts energy without emitting harmful substances to the atmosphere, noise, and waste. Photovoltaics is the cleanest technology among all the technologies that use renewable energy. Considering the shorter and shorter times needed to generate energy equal to that required by the module production process, during its lifetime it will produce much more electricity than was used to produce it. This results in a reduction in greenhouse gas emissions. For example, during its lifetime, a 200 Wp module prevents the emission of over four tonnes (Mg = 106 g) of carbon dioxide. Although the technologies for the production of photovoltaic cells and modules entail a lower environmental burden compared to other sources of electricity, it is necessary to remember about the risks associated with the use of chemicals at the stage of module production, which threatens their release to groundwater or air, and the need to recycle modules after their disassembly. Also, the energy consumption in the production phase of PV systems significantly worsens the ecological balance. This article presents an analysis of the impact of the materials and technologies used on the result of the environmental analysis of PV installations. In the article a detailed energy balance analysis of the EPBT value has been carried out. The values of greenhouse gas emissions throughout the life cycle of the solar module were determined. Methods of limiting the impact of photovoltaic technologies on the natural environment were indicated.
Rocznik
Strony
23--35
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Faculty of Chemistry, Department of Energy Conversion and Storage, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Tyagi VV, Panwar NL, Rahim NA, Kothari R. Review on solar air heating system with and without thermal energy storage system. Renew Sust Energy Rev. 2012;16(4):2289-303. DOI: 10.1016/j.rser.2011.12.005.
  • [2] Qian X, Yang Y, Lee SW, Caballes MJ, Alamu OS. Cooling performance analysis of the lab-scale hybrid oyster refrigeration system. Processes. 2020;8(8):899. DOI: 10.3390/pr8080899.
  • [3] Singh DB, Mahajan A, Devli D, Bharti K, Kandari S, Mittal G. A mini review on solar energy based pumping system for irrigation. Materials Today: Proceedings. 2021;43:417-25. DOI: 10.1016/j.matpr.2020.11.716.
  • [4] Li Y. A photovoltaic ecosystem: improving atmospheric environment and fighting regional poverty. Technol Forecasting Social Change. 2019;140:69-79. DOI: 10.1016/j.techfore.2018.12.002.
  • [5] Photovoltaics Technology Development Report, Joint Research Centre (JRC), Luxembourg: Publications Office of the European Union, 2020. DOI: 10.2760/827685.
  • [6] Tilli M, Paulasto-Krockel M, Petzold M, Theuss H, Motooka T, Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier; 2010. ISBN: 9780128177877.
  • [7] Basore PA. Defining terms for crystalline silicon solar cells. Progress in Photovoltaics: Res Appl. 1994;2:177-9. DOI: 10.1002/pip.4670020213.
  • [8] LaBelle Jr. HE, Mlavsky AI. Edge-defined, film-fed crystal growth. J Crystal Growth. 1972;13-14:84-7. DOI: 10.1016/0022-0248(72)90067-X.
  • [9] Aberle AG. Thin-film solar cells. Thin Solid Films. 2009;517(17):4706-10. DOI: 10.1016/j.tsf.2009.03.056.
  • [10] Hook JR, Hall HE. Solid State Physics. 2nd Edition, Part of: Manchester Physics; Wiley; 2013. ISBN: 9780471928058.
  • [11] O’Donnell KP, Chen X. Temperature dependence of semiconductor band gaps. Appl Phys Lett. 1991;58:2924-6. DOI: 10.1063/1.104723.
  • [12] Kittel C. Introduction to Solid State Physics. 6th Ed. New York: John Wiley; 1986, p. 185. ISBN: 9780471874744.
  • [13] Yamaguchi M. High-Efficiency GaAs-Based Solar Cells, Post-Transition Metals. IntechOpen; 2021. DOI: 10.5772/intechopen.94365.
  • [14] Crystalline Silicon Photovoltaics Research. Office of Energy Efficiency & Renewable Energy 2021. Available from: https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research.
  • [15] Korun M. Navruz TS. J Phys. Conf Series. 2016;707:012035. DOI: 10.1088/1742-6596/707/1/012035.
  • [16] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress Photovoltaics: Res Appl. 2011;19(7):894-7. DOI: 10.1002/pip.1078.
  • [17] Kroll U, Bucher C, Benagli S, Schönbächler I, Meier J, et al. High-efficiency p-i-n a- Si:H solar cells with low boron cross-contamination prepared in a large-area single-chamber PECVD reactor. Thin Solid Films. 2004;451-452:525-30. DOI: 10.1016/j.tsf.2003.11.036.
  • [18] Haloui H, Touafek K, Zaabat M, Khelifa A. The Copper Indium Selenium (CuInSe2) thin films solar cells for Hybrid Photovoltaic Thermal Collectors (PVT). Energy Procedia. 2015;74:1213-9. DOI: 10.1016/j.egypro.2015.07.765.
  • [19] Belghachi A, Limam N. Effect of the absorber layer band-gap on CIGS solar cell. Chinese J Phys Taipei. 2017;55(4). DOI: 10.1016/j.cjph.2017.01.011.
  • [20] Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Explor Exploit. 2016;34:485-526. DOI: 10.1177/0144598716650552.
  • [21] Photovoltaics Report. Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH, Freiburg; 2020. Available from: www.ise.fraunhofer.de.
  • [22] Dobrotkova Z, Goodrich A, Mackay M, Philibert C, Simbolotti G, Wenhua X. Cost Analysis of Solar Photovoltaics. International Renewable Energy Agency (IRENA) 2012. Available from: https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Solar-Photovoltaics.
  • [23] Svarc J. Solar Panel Efficiency, Clean Energy Reviews 2021. Available from: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed 21.12.2022).
  • [24] Fthenakis VM, Kim HC. Photovoltaics: Life-cycle analyses. Solar Energy. 2011;85:1609-28. DOI: 10.1016/j.solener.2009.10.002.
  • [25] Summers K, Radde J. Potential Health and Environmental Impacts Associated with the Manufacture and Use of Photovoltaic Cells. PIER Final Project Report. Tetra Tech, Inc.; 2004. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.1726&rep=rep1&type=pdf.
  • [26] Fthenakis VM. End-of-life management and recycling of PV modules. Energy Policy 2000;28:1051-8. DOI: 10.1016/S0301-4215(00)00091-4.
  • [27] Hill R, Baumann AE. Environmental cost of photovoltaic. IEE Proc. Part A: Science. Measurement Technol. 1993;140:76-80. DOI: 10.1049/ip-a-3.1993.0013.
  • [28] Andersson BA, Azar C, Holmberg J, Karlsson S. Material constraints for thin-film solar cells. Energy. 1998;23(5):407-11. DOI: 10.1016/S0360-5442(97)00102-3.
  • [29] © 2020 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis. Available from: https://solargis.com/maps-and-gis-data/download/world.
  • [30] Klugmann-Radziemska E, Kuczyńska-Łażewska A. The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - a life cycle assessment of environmental impacts. Solar Energy Materials Solar Cells. 2020;205:1-9. DOI: 10.1016/j.solmat.2019.110259.
  • [31] Alsema EA, Nieuwlaar E. Energy viability of photovoltaic systems. Energy Policy. 2000;28:999-1010. DOI: 10.1016/S0301-4215(00)00087-2.
  • [32] Zhang T, Wang M, Yang H. A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems. Energies. 2018;11:3157. DOI: 10.3390/en11113157.
  • [33] Gómez González L, Fernández de Mera Y, Rico A, Broseta Sancho A. Comparison of the Life Cycle Assessment of Photovoltaic Modules Made of Different Solar-cells Technologies. 25th European Solar Energy Conf. Valencia. 2010. DOI: 10.4229/25thEUPVSEC2010-4BV.1.70.
  • [34] End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies, IEA PVPS Task12, Subtask 1, Recycling Report IEA-PVPS T12-10:2018. January 2018. Available from: https://www.researchgate.net/publication/324703321_Task_12_End-of-Life_Management_of_Photovoltaic_Panels_Trends_in_PV_Module_Recycling_Technologies.
  • [35] Directive 2012/19/EU of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Available from: https://environment.ec.europa.eu/topics/waste-andrecycling/waste-electrical-and-electronic-equipment-weee_en.
  • [36] Greenhouse gas emission intensity of electricity generation, Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-12/#tab-googlechartid_chart_11 (accessed 03.04.2023).
  • [37] Cheng Y, Jichao X. Model of environmental management science based on circular economy theory. Ecol Chem Eng S. 2021;28(4):513-24. DOI: 10.2478/eces-2021-0034.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2412592-21a5-44c2-ab35-e76a807e838c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.