PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Post-processing of titanium 3D printouts with radio frequency plasma

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing is a technology of great interest for biomedical engineering and medicine since it enables to mimic natural structures. The 3D printouts require post-processing to ensure desired surface properties and interaction with living matter. The presented research focuses on novel approaches involving plasma treatment of Ti6Al4V scaffolds obtained by Direct Metal Printing. Solid samples and scaffolds of two various geometries were treated in atmospheres of pure argon, argon and oxygen or pure oxygen. The effect of post-processing was evaluated with scanning electron microscopy, measurements of mass, and surface roughness. In all the examined cases the proposed post-processing method reduces the amount of loosely bonded powder particles remaining after printing. The changes of mass before and after the treatment are much lower than in the case of popular wet chemical methods. The character of undergoing post-processing depends on the process atmosphere resulting in physical etching or the combination of physical etching and chemical oxidation. The action of argon or argon/ oxygen plasma reduces mass to the level of only 1% while by use of pure oxygen atmosphere even the slight increase of the overall sample mass is observed. The plasma etching was successfully introduced for the treatment of titanium 3D printouts to minimize the detachment of powder particles. That method not only is much softer than chemical etching but it can also lead to specific surface structurization that may be beneficial regarding medical applications of such printouts.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 20 poz., rys., zdj.
Twórcy
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Clinical Department of Orthopedic-Traumatic, Oncological and Reconstructive Surgery, St. Barbara Specialized Regional Hospital No. 5, Sosnowiec, Plac Medyków 1, 41-200 Sosnowiec, Poland
Bibliografia
  • [1] Shahrubudin N., Lee T.C., Ramlan R.: An Overview on 3D Printing Technology Technological, Materials, and Applications. Procedia Manufacturing 35 (2019) 1286-1296.
  • [2] Gottsauner M., Reichert T., Koerdt S., Wieser S., Klingelhoeffer C., Kirschneck C., Hoffmann J., Ettl T., Ristow O.: Comparison of additive manufactured models of the mandible in accuracy and quality using six different 3D printing systems. Journal of Cranio- -Maxillofacial Surgery (2021)
  • [3] Dumpa N., Butreddy A., Wang H., Komanduri N., Bandari S., Repka M.A.: 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. International Journal of Pharmaceutics 600 (2021) 120501.
  • [4] Guoqing Z., Junxin L., Chengguang Z., Juanjuan X., Xiaoyu Z., Anmin W.: Design Optimization and Manufacturing of Bio-fixed tibial implants using 3D printing technology. Journal of the Mechanical Behavior of Biomedical Materials 117 (2021) 104415.
  • [5] Novitskaya E., Hamed E., Li J., Manilay Z., Jusiak I., McKittrick J.: Hierarchical Structure of Porosity in Cortical and Trabecular Bones. MRS Online Proceedings Library 1420 (2012) 24-29.
  • [6] Sari M., Hening P., Chotimah, Ana I. D., Yusuf Y.: Porous structure of bioceramics carbonated hydroxyapatite-based honeycomb scaffold for bone tissue engineering. Materials Today Communications 26 (2021) 102135.
  • [7] Hollister S.J.: Porous scaffold design for tissue engineering. Nat Mater 5 (2005) 518-524.
  • [8] Torres Y., Trueba P., Pavón J.J., Chicardi E., Kamm P., García- -Moreno F., Rodríguez-Ortiz J.A.: Design, processing and characterization of titanium with radial graded porosity for bone implants. Materials & Design 110 (2016) 179-187.
  • [9] Ahn T., Gidley D.W., Thornton A.W., Wong-Foy A.G, Orr B.G, Kozloff K.M., Banaszak Holl M.M.: Hierarchical Nature of Nanoscale Porosity in Bone Revealed by Positron Annihilation Lifetime Spectroscopy. ACS Nano 15 (2021) 4321-4334.
  • [10] Worts N., Jones J., Squier J.: Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Optics Communications 430 (2019) 352-357.
  • [11] Kim T.B., Yue S., Zhang Z., Jones E., Jones J.R., Lee P.D.: Additive manufactured porous titanium structures: through-process quantification of pore and strut networks. J. Mater. Process. Technol. 214 (2014) 2706-2715.
  • [12] Łyczkowska E., Szymczyk P., Dybała B., Chlebus E.: Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing Arch. Civ. Mech. Eng. 14 (2014) 586-594.
  • [13] Wysocki B., Idaszek J., Buhagiar J., Szlązak K., Brynk T., Kurzydłowski K.J., Święszkowski W.: The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response. Materials Science and Engineering: C 95 (2019) 428-439.
  • [14] Wu Y.C., Kuo C.N., Chung Y.C., Ng C.H., Huang J.C.: Effects of Electropolishing on Mechanical Properties and Bio-Corrosion of Ti6Al4V Fabricated by Electron Beam Melting Additive Manufacturing. Materials 12 (2019) 1466.
  • [15] Urlea V., Brailovski V.: Electropolishing and electropolishing- -related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. Journal of Materials Processing Technology 242 (2017) 1-11.
  • [16] Kim J.Y., Kim W.J., Kim G.H.: Scaffold with micro/nanoscale topographical cues fabricated using E-field-assisted 3D printing combined with plasma-etching for enhancing myoblast alignment and differentiation. Applied Surface Science 509 (2020) 145404.
  • [17] Liu Z., Yang C., Chen T., Cai W.S., Liu L.H., Kang L.M., Wang Z., Li X.Q., Zhang W.W., Li Y.Y.: Influence of discharge plasma modification on physical properties and resultant densification mechanism of spherical titanium powder. Powder Technology 389 (2021) 138-144.
  • [18] Wysocki B., Idaszek J., Buhagiar J., Szlązak K., Brynka T., Kurzydłowski K.J., Święszkowski W.: The influence of chemical polishing of titanium scaffolds on their mechanical strength and in- -vitro cell response. Materials Science & Engineering C 95 (2019) 428-439.
  • [19] Pyka G., Burakowski A., Kerckhofs G., Moesen M., Van Bael S., Schrooten J., Wavers M.: Surface Modification of Ti6Al4 V Open Porous structures Produced by additive manufacturing. Adv Eng Mater 14 (2012363-370).
  • [20] Chang S., Liu A., Yee C., Ong A., Zhang L., Huang X., Tan Y.H., Zhao L., Li L., Ding J.: Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing. Materials Research Letters 7 (2019) 282-289.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f23d8194-9ffa-4704-adf7-1e77c6547f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.