PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of material distribution and damping on the dynamic stability of Bernoulli-Euler beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study analyzed the influence of materials and different types of damping on the dynamic stability of the Bernoulli-Euler beam. Using the mode summation method and applying an orthogonal condition of eigenfunctions and describing the analyzed system with the Mathieu equation, the problem of dynamic stability was solved. By examining the influence of internal and external damping and damping in the beam supports, their influence on the regions of stability and instability of the solution to the Mathieu equation was determined.
Rocznik
Strony
art. no. e145567
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  • Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-201 Czestochowa, Poland
autor
  • Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70833 Ostrava, Czech Republic
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Applied Mechanics, Faculty of Mechanical Engineering, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
Bibliografia
  • [1] B. Akesson, Understanding Bridges Collapses. London: CRC Press, Taylor & Francis Group, 2008.
  • [2] D. Imhof, “Risk assessment of existing bridge structure,” Ph.D. dissertation, University of Cambridge, 2004.
  • [3] “Tacoma narrows bridge collapse,” http://www.youtube.com/watch?v=3mclp9QmCGs, 1940.
  • [4] L. Euler, A method for finding curved lines enjoying properties of maximum or minimum, or solution of isoperimetric problems in the broadest accepted sense (in Latin). Lausanæ et Genevæ: M.M. Bousquet et Soc. In (Euler, OO, Series I, 24), 1744.
  • [5] J.-L. Lagrange, “On the figure of the columns” (in French), Miscellanea Taurinensia, vol. 5, pp. 123–166, 1770.
  • [6] J.-L. Lagrange, On the figure of the columns(in French). In Oeuvres de Lagrange V. 2; Serret, M.J.A., Ed.; Gauthier-Villars: Paris, 1868.
  • [7] E. Kacapor, T.M. Atanackovic, and C. Dolicanin, “Optimal shape and first integrals for inverted compressed column,” Mathematics, vol. 8, no. 3, p. 334, 2020, doi: 10.3390/math8030334.
  • [8] N. Olhoff and A.P. Seyranian, “Bifurcation and post-buckling analysis of bimodal optimum columns,” Int. J. Solids Struct., vol. 45, no. 14, pp. 3967–3995, 2008, doi: 10.1016/j.ijsolstr.2008.02.003.
  • [9] T.M. Atanackovic and A.P. Seyranian, “Application of pontryagin’s principle to bimodal optimization problems,” Struct. Multidiscip. Optim., vol. 37, no. 1, pp. 1–12, 2008, doi: 10.1007/s00158-007-0211-6.
  • [10] M. Beck, “The buckling load of the cantilevered, tangentially compressed bar,” Z. Angew. Math. Phys., vol. 3, no. 3, pp. 225–228, 1952, doi: 10.1007/BF02008828.
  • [11] Y.M. Ghugal and R.P. Shimpi, “A review of refined shear deformation theories for isotropic and anisotropic laminated beams,” J. Reinf. Plast. Compos., vol. 20, no. 3, pp. 255–272, 2001, doi: 10.1177/073168401772678283.
  • [12] S. Timoshenko and J. Gere, Theory of Elastic Stability, 2nd ed. McGraw-Hill Book Co. Inc., 1961.
  • [13] I. Elishakoff, “Who developed the so-called timoshenko beam theory?” Math. Mech. Solids., vol. 25, no. 1, pp. 97–116, 2020, doi: 10.1177/1081286519856931.
  • [14] W. Bickford, “A consistent higher order beam theory,” in Int. Proceeding of Dev. in Theoretical and Applied Mechanics (SEC-TAM), 1982, vol. 11, pp. 137–150.
  • [15] J.N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech., vol. 51, no. 4, pp. 745–752, Dec 1984, doi: 10.1115/1.3167719.
  • [16] J.N. Reddy, Theory and Analysis of Elastic Plates and Shells. CRC Press, Nov 2006, doi: 10.1201/9780849384165.
  • [17] I. Elishakoff, Y. Li, and J.H. Starnes Jr., Non-Classical Problems in the Theory of Elastic Stability. Cambridge: Cambridge University Press, Jan. 2001, doi: 10.1017/cbo9780511529658.
  • [18] O.N. Kirillov, Nonconservative Stability Problems of Modern Physics. Berlin/Boston: De Gruyter, Jun. 2013, doi: 10.1515/9783110270433.
  • [19] Yuwaraj M. Ghugal and A.G. Dahake, “Flexure of cantilever thick beams using trigonometric shear deformation theory,” Int. J. Mech., Ind. Aerosp. Sci., 2014, doi: 10.5281/ZENODO.1336484.
  • [20] H.H. Leipholz, “Aspects of dynamic stability of structures,” J. Eng. Mech. Div., vol. 101, no. 2, pp. 109–124, Apr 1975, doi: 10.1061/jmcea3.0002000.
  • [21] C. Sundararajan, “On the flutter and divergence of a two-degree-of-freedom elastic system subjected to follower forces,” Z. Angew. Math. Mech., vol. 53, no. 11, pp. 801–802, 1973, doi: 10.1002/zamm.19730531111.
  • [22] Z. Kordas and M. Życzkowski, “On the loss of stability of a rod under a super-tangential force,” Arch. Mech. Stos., vol. 15, no. 1, pp. 7–31, 1963.
  • [23] C. Sundararajan, “Influence of an elastic end support on the vibration and stability of Beck’s column,” Int. J. Mech. Sci., vol. 18, no. 5, pp. 239–241, May 1976, doi: 10.1016/0020-7403(76)90005-9.
  • [24] D. Bigoni and G. Noselli, “Experimental evidence of flutter and divergence instabilities induced by dry friction,” J. Mech. Phys. Solids, vol. 59, no. 10, pp. 2208–2226, Oct 2011, doi: 10.1016/j.jmps.2011.05.007.
  • [25] A. Kounadis, “The existence of regions of divergence instability for nonconservative systems under follower forces,” Int. J. Solids Struct., vol. 19, no. 8, pp. 725–733, 1983, doi: 10.1016/0020-7683(83)90067-7.
  • [26] J. Gołaś and A. Niespodziana, “On influence the shear of deformation for Beck’s column stability with local discontinuous,” Arch. Civ. Eng., vol. 54, no. 3, pp. 477–491, 2008.
  • [27] L. Tomski and S. Uzny, “The regions of flutter and divergence instability of a column subjected to beck’s generalized load, taking into account the torsional flexibility of the loaded end of the column,” Mech. Res. Commun., vol. 38, no. 2, pp. 95–100, Mar 2011, doi: 10.1016/j.mech rescom.2011.01.013.
  • [28] W. Szemplińska-Stupnicka, Application of parametric differential equations in mechanics and technology. Warszawa: Pr. IPPT PAN, 1, Warszawska Drukarnia Naukowa, 1975, (in Polish).
  • [29] J. Gołaś and A. Niespodziana, “The dynamic stability of a stepped cantilever beam with attachments,” J. Vibroengineering, vol. 15, no. 1, pp. 280–290, 2013.
  • [30] W. Sochacki, “Modelling and analysis of damped vibration in hydraulic cylinder,” Math. Comput. Model. Dyn. Syst., vol. 21, no. 1, pp. 23–37, Jan 2014, doi: 10.1080/13873954.2013.871564.
  • [31] W. Sochacki and M. Bold, “Vibration of crane radius change system with internal damping,” J. Appl. Math. Comput. Mech., vol. 12, no. 2, pp. 97–103, Jun 2013, doi: 10.17512/jamcm.2013.2.12.
  • [32] M. Bold and W. Sochacki, “Influence of complex damping on transverse and longitudinal vibrations of portal frame,” J. Vibroengineering, vol. 21, no. 1, pp. 1–10, 2019.
  • [33] M. Bold and W. Sochacki, “Coupled vibration of cracked frame with damping,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 236–239, Aug 2020, doi: 10.12693/aphyspola.138. 236.
  • [34] J. Giergiel, Mechanical vibrations of discrete systems. Rzeszów: Oficyna wydawnicza Politechniki Rzeszowskiej, 2004, (in Polish).
  • [35] B. Żółtowski and S. Niziński, Modeling of machine operation processes. Bydgoszcz: Wydawnictwo Makar – B. ˙Z., 2002, (in Polish).
  • [36] Z. Osiński, Damping of mechanical vibrations. Warszawa: PWN, 1979, (in Polish).
  • [37] J. Giergiel, Mechanical Vibration Damping, College Scripts No. 920. Kraków: AGH, 1984, (in Polish).
  • [38] T. Soong and B. Spencer, “Supplemental energy dissipation: state-of-the-art and state-of-the-practice,” Eng. Struct., vol. 24, no. 3, pp. 243–259, Mar 2002, doi: 10.1016/s0141-0296(01)00092-x.
  • [39] Z. Osiński, Vibration theory. Warszawa: PWN, 1980, (in Polish).
  • [40] J.-W. Liang and B.F. Feeny, “Identifying Coulomb and viscous friction in forced dual-damped oscillators,” J. Vib. Acoust., vol. 126, no. 1, pp. 118–125, Jan 2004, doi: 10.1115/1.1640356.
  • [41] J. Walker, D. Halliday, and R. Resnick, Fundamentals of physics. vol. 2. Warszawa: PWN, 2014, (in Polish).
  • [42] M. Gürgöze, A. Doğruoğlu, and S. Zeren, “On the eigencharacteristics of a cantilevered visco-elastic beam carrying a tip mass and its representation by a spring-damper-mass system,” J. Sound Vib., vol. 301, no. 1-2, pp. 420–426, Mar 2007, doi: 10.1016/j.jsv.2006.10.002.
  • [43] J. Przybylski, Vibrations and stability of prestressed two-member bar systems under non-conservative loads, ser. Monographs no. 92. Częstochowa: Politechnika Częstochowska, 2002.
  • [44] M. Gürgöze and H. Erol, “Dynamic response of a viscously damped cantilever with a viscous end condition,” J. Sound Vib., vol. 298, no. 1-2, pp. 132–153, Nov 2006, doi: 10.1016/j.jsv.2006.04.042.
  • [45] S. Krenk, “Complex modes and frequencies in damped structural vibrations,” J. Sound Vib., vol. 270, no. 4-5, pp. 981–996, Mar 2004, doi: 10.1016/s0022-460x(03)00768-5.
  • [46] K. Jamroziak, M. Bocian, and M. Kulisiewicz, “Examples of applications of non-classical elastic-damping models in the ballistic impact process,” Modelowanie Inżynierskie, vol. 40, pp. 95–102, 2010, (in Polish).
  • [47] K. Jamroziak, “Influence of dry friction on impact energy dissipation,” Wybrane Problemy Inżynierskie, vol. 2, pp. 139–144, 2011, (in Polish).
  • [48] M.D. Rosa, M. Lippiello, M. Maurizi, and H. Martin, “Free vibration of elastically restrained cantilever tapered beams with concentrated viscous damping and mass,” Mech. Res. Commun., vol. 37, no. 2, pp. 261–264, Mar 2010, doi: 10.1016/j.mechrescom.2009.11.006.
  • [49] V. Jovanovic, “A fourier series solution for the transverse vibration response of a beam with a viscous boundary,” J. Sound Vib., vol. 330, no. 7, pp. 1504–1515, Mar 2011, doi: 10.1016/j.jsv.2010.10.007.
  • [50] H.A. Evensen and R.M. Evan-Iwanowski, “Effects of longitudinal inertia upon the parametric response of elastic columns,” J. Appl. Mech., vol. 33, no. 1, pp. 141–148, 1966, doi: 10.1115/1.3624971.
  • [51] I. Kovacic, R. Rand, and S.M. Sah, “Mathieu’s equation and its generalizations: Overview of stability charts and their features,” Appl. Mech. Rev., vol. 70, no. 2, Feb 2018, doi: 10.1115/1.4039144.
  • [52] R.H. Rand, Lecture Notes on Nonlinear Vibrations (Version 53). Ithaca, NY: Cornell University, 2017.
  • [53] J.D. Cole, Perturbation Methods in Applied Mathematics. Waltham: Blaisdell Pub. Co, 1968.
  • [54] A. Nayfeh, Perturbation Methods. New York: Wiley, 1973.
  • [55] P. Obara and W. Gilewski, “Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 739–750, Dec 2016, doi: 10.1515/bpasts-2016-0083.
  • [56] M. Burzyńska–Szyszko, Construction materials. Warszawa: Politechnika Warszawska, 2011, (in Polish).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f237c9f6-d49b-4b72-9560-5f8c991a8d63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.