PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pulsatile powell-eyring nanofluid flow in a channel with inclined magnetic field and chemical reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current article addresses the impacts of the pulsatile flow of Powell-Eyring nanofluid using Buongiorno’s model in a horizontal channel. It also describes the combined impacts of thermophoresis and Brownian motion. Blood is an example of a Powell-Eyring fluid. The Runge-Kutta (R-K) 4th-order method, along with the shooting technique, is used to determine solutions for velocity, temperature, and concentration. The impacts of different parameters, including an inclined magnetic field, chemical reaction, Lewis number, and heat source or sink parameter, are illustrated graphically. The mass flux distribution decreases due to an increase in the values of the Powell-Eyring fluid parameter.
Rocznik
Strony
519--535
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University Inavolu, Vijayawada-522237, India
  • Department of Mathematics, Narayana Engineering College (Autonomous) Gudur, Tirupati-524 101, India
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University Inavolu, Vijayawada-522237, India
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University Inavolu, Vijayawada-522237, India
Bibliografia
  • 1. Choi S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, [in:] Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA (ASME, FED 231/MD), 66: 99–105, 1995, https://cir.nii.ac.jp/ crid/1571980074227838464.
  • 2. Kumar B., Srinivas S., Unsteady hydromagnetic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet with Joule heating and thermal radiation, Journal of Applied and Computational Mechanics, 6(2): 259–270, 2019, doi: 10.22055/jacm. 2019.29520.1608.
  • 3. Waqas H., Naeem H., Manzoor U., Sivasankaran S., Alharbi A.A., Alshomrani A.S., Muhammad T., Impact of electro-magneto-hydrodynamics in radiative flow of nanofluids between two rotating plates, Alexandria Engineering Journal, 61 (12): 10307– 10317, 2022, doi: 10.1016/j.aej.2022.03.059.
  • 4. Alsaedi A., Hayat T., Qayyum S., Yaqoob R., Eyring-Powell nanofluid flow with nonlinear mixed convection: Entropy generation minimization, Computer Methods and Programs in Biomedicine, 186: 105183, 2020, doi: 10.1016/j.cmpb.2019.105183.
  • 5. Buongiorno J., Convective transport in nanofluids, Journal of Heat Transfer, 128 (3): 240–250, 2006, doi: 10.1115/1.2150834.
  • 6. Hayat T., Sajjad R., Muhammad T., Alsaedi A., Ellahi R., On MHD nonlinear stretching flow of Powell-Eyring nanomaterial, Results in Physics, 7: 535–543, 2017, doi: 10.1016/j.rinp.2016.12.039.
  • 7. Kumar C.K., Srinivas S., Reddy A.S., MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and Joule heating, Journal of Mechanics, 36(4): 535–549, 2020, doi: 10.1017/jmech.2020.5.
  • 8. Mallick B., Misra J.C., Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field, Engineering Science and Technology, an International Journal, 22(1): 266–281, 2019, doi: 10.1016/j.jestch.2018.12.00
  • 9. Sheikholeslami M., Chamkha A.J., Rana P., Moradi R., Combined thermophoresis and Brownian motion effects on nanofluid free convection heat transfer in an L-shaped enclosure, Chinese Journal of Physics, 55(6): 2356–2370, 2017, doi: 10.1016/j.cjph.2017. 09.011.
  • 10. Shehzad N., Zeeshan A., Ellahi R., Vafai K., Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model, Journal of Molecular Liquids, 222: 446–455, 2016, doi: 10.1016/j.molliq.2016.07.052.
  • 11. Hayat T., Shafiq A., Alsaedi A., Asghar S., Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity, AIP Advances, 5: 087108, 2015, doi: 10.1063/1.4928321.
  • 12. Kumar C.K., Srinivas S., Simultaneous effects of thermal radiation and chemical reaction on hydromagnetic pulsatile flow of a Casson fluid in a porous space, Engineering Transactions, 65(3): 461–481, 2017.
  • 13. Acharya N., Maity S., Kundu P.K., Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization, Applied Nanoscience, 10: 633–647, 2020. doi: 10.1007/s13204-019-01123-0.
  • 14. Khan A.A., Naeem S., Ellahi R., Sait S.M., Vafai K., Dufour and Soret effects on Darcy-Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity, International Journal of Numerical Methods for Heat & Fluid Flow, 30(9): 4331–4347, 2020, doi: 10.1108/HFF-11-2019-0837.
  • 15. Ahmed S.E., Elshehabey H.M., Oztop H.F., Natural convection of three-dimensional non-Newtonian nanofluids with Marangoni effects and inclined magnetic fields, International Communications in Heat and Mass Transfer, 137: 106288, 2022, doi: 10.1016/ j.icheatmasstransfer.2022.106288.
  • 16. Kaladhar K., Reddy K.M., Srinivasacharya D., Inclined magnetic field, thermal radiation, and Hall current effects on mixed convection flow between vertical parallel plates, Journal of Heat Transfer, 141(10): 102501, 2019, doi: 10.1115/1.4044391.
  • 17. Nath R., Murugesan K., Impact of nanoparticle shape on thermo-solutal buoyancy induced lid-driven-cavity with inclined magnetic-field, Propulsion and Power Research, 11(1): 97–117, 2022, doi: 10.1016/j.jppr.2022.01.002.
  • 18. Noreen S., Qasim M., Peristaltic flow with inclined magnetic field and convective boundary conditions, Applied Bionics and Biomechanics, 11 (1–2): 61–67, 2014, doi: 10.1155/ 2014/426217.
  • 19. Bianco V., Trubatch A.D., Wei H., Yecko P., Quantifying volume loss of a magnetically localized ferrofluid bolus in pulsatile pipe flow, Journal of Magnetism and Magnetic Materials, 524: 167595, 2021, doi: 10.1016/j.jmmm.2020.167595.
  • 20. Cheng Z., Jelly T.O., Illingworth S.J., Marusic I., Ooi A.S.H., Forcing frequency effects on turbulence dynamics in pulsatile pipe flow, International Journal of Heat and Fluid Flow, 82: 108538, 2020, doi: 10.1016/j.ijheatfluidflow.2020.108538.
  • 21. Govindarajulu K., Reddy A.S., Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects, Physics of Fluids, 34: 013105, 2022, doi: 10.1063/5.0074894.
  • 22. Radhakrishnamacharya G., Maiti M.K., Heat transfer to pulsatile flow in a porous channel, International Journal of Heat and Mass Transfer, 20(2): 171–173, 1977, doi: 10.1016/0017-9310(77)90009-6. 535
  • 23. Srinivas S., Kumar C.K., Reddy A.S., Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field, Nonlinear Analysis: Modelling and Control, 23(2): 213–233, 2018, doi: 10.15388/NA.2018.2.5.
  • 24. Wang C.-Y., Pulsatile flow in a porous channel, Journal of Applied Mechanics, 38(2): 553–555, 1971, doi: 10.1115/1.3408822.
  • 25. Datta N., Dalal D.C., Mishra S.K., Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a channel, International Journal of Heat and Mass Transfer, 36(7): 1783–1788, 1993, doi: 10.1016/S0017-9310(05)80164-4.
  • 26. Horng T.-L., Lin W.-L., Liauh C.-T., Shih T.-C., Effects of pulsatile blood flow in large vessels on thermal dose distribution during thermal therapy, Medical Physics, 34(4): 1312–1320, 2007, doi: 10.1118/1.2712415.
  • 27. Kumar C.K., Srinivas S., Pulsating hydromagnetic flow of Casson fluid in a vertical channel filled with non-Darcian porous medium, Heat Transfer, 50(6): 5225–5239, 2021, doi: 10.1002/htj.22121.
  • 28. Sankar D.S., A two-fiuid model for pulsatile fiow in catheterized blood vessels, International Journal of Non-Linear Mechanics, 44(4): 337–351, 2009, doi: 10.1016/j.ijnonlin mec.2008.12.008.
  • 29. Shawky H.M., Pulsatile fiow with heat transfer of dusty magnetohydrodynamic ReeEyring fiuid through a channel, Heat Mass Transfer, 45: 1261–1269, 2009, doi: 10.1007/ s00231-009-0502-0.
  • 30. Srinivas S., Kumar C.K., Reddy A.S., Dufour and Soret effects on pulsatile hydromagnetic flow of Casson fluid in a vertical non-Darcian porous space, Nonlinear Analysis: Modelling and Control, 27(4): 669–683, 2022, doi: 10.15388/namc.2022.27.26678.
  • 31. Thamizharasan T., Reddy A.S., Pulsating hydromagnetic flow of Au-blood Jeffrey nanofluid in a channel with Joule heating and viscous dissipation, Nanoscience and Technology: An International Journal, 13(2): 1–13, 2022, doi: 10.1615/NanoSciTechnol IntJ.2022039247.
  • 32. Wang X., Qiao Y., Qi H., Xu H., Numerical study of pulsatile non-Newtonian blood flow and heat transfer in small vessels under a magnetic field, International Communications in Heat and Mass Transfer, 133: 105930, 2022, doi: 10.1016/j.icheatmasstransfer. 2022.105930.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f23216c7-b750-41b1-ad93-b8107bebed75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.