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Abstract. An edge product cordial labeling is a variant of the well-known cordial labeling.
In this paper we characterize graphs admitting an edge product cordial labeling. Using this
characterization we investigate the edge product cordiality of broad classes of graphs, namely,
dense graphs, dense bipartite graphs, connected regular graphs, unions of some graphs, direct
products of some bipartite graphs, joins of some graphs, maximal k-degenerate and related
graphs, product cordial graphs.
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1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated vertices.
If G is a graph, then V (G) and E(G) stand for the vertex set and edge set of G,
respectively. Cardinalities of these sets are called the order and size of G. The subgraph
of a graph G induced by U ⊆ V (G) is denoted by G[U ]. The set of vertices of G
adjacent to a vertex v ∈ V (G) is denoted by NG(v).

For a graph G, a mapping ϕ : E(G)→ {0, 1} induces a vertex mapping
ϕ∗ : V (G)→ {0, 1} defined by

ϕ∗(v) =
∏

u∈NG(v)

ϕ(vu).

Set

εϕ(i) := |{e ∈ E(G) : ϕ(e) = i}| and νϕ(i) := |{v ∈ V (G) : ϕ∗(v) = i}|
for each i ∈ {0, 1}. A mapping ϕ : E(G) → {0, 1} is called an edge product cordial
labeling of G if

|εϕ(0)− εϕ(1)| ≤ 1 and |νϕ(0)− νϕ(1)| ≤ 1.
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A graph that admits an edge product cordial labeling is called an edge product cordial
graph.

The following claim is evident.
Observation 1.1. A mapping ϕ : E(G)→ {0, 1} is an edge product cordial labeling
of a graph G if and only if

εϕ(0) ∈
{
b|E(G)|/2c, d|E(G)|/2e

}
and νϕ(0) ∈

{
b|V (G)|/2c, d|V (G)|/2e

}
.

An edge product cordial labeling is a version of the well-known cordial labeling
defined by Cahit [2]. Vaidya and Barasara [11] introduced the concept of an edge
product cordial labeling as the edge analogue of a product cordial labeling defined
by Sundaram et al. [10]. In [11–14, 16, 17] Vaidya and Barasara presented some
classes of edge product cordial graphs and also some classes of graphs admitting no
edge product cordial labelings. Prajapati and co-authors [8, 9] also deal with edge
product cordial graphs. Vaidya and Barasara [15] also introduced the concept of
a total edge product cordial labeling, i.e., a labeling ϕ : E(G) → {0, 1} satisfying
|
(
εϕ(0) + νϕ(0)

)
−
(
εϕ(1) + νϕ(1)

)
| ≤ 1. The graphs admitting a total edge product

cordial labeling were completely characterized in [5]. We refer the reader to [4] for
comprehensive references.

2. CRUCIAL RESULTS

A matching in a graph is a set of pairwise nonadjacent edges. The largest number
of edges in any matching of G is denoted by α(G). An edge cover of a graph G is
a subset A of E(G) such that every vertex of G is incident with an edge in A. The
smallest number of edges in any edge cover of G is denoted by ρ(G). Note that only
graphs with no isolated vertices have edge covers. For such graphs Gallai [3] proved
that α(G) + ρ(G) = |V (G)|.

Now we are able to prove a crucial result of the paper.
Theorem 2.1. Let G be a graph with no isolated vertex. Then G is an edge product
cordial graph if and only if there is a set U ⊂ V (G) satisfying
(i) |U | ∈

{
b|V (G)|/2c, d|V (G)|/2e

}
,

(ii) G[U ] contains no isolated vertex,
(iii) α

(
G[U ]

)
≥ |U | − d|E(G)|/2e,

(iv)
∣∣E(G[U ])

∣∣ ≥
⌊
|E(G)|/2

⌋
.

Proof. If G is an edge product cordial graph, then there is an edge product cordial
labeling ϕ of G. Set U := {v ∈ V (G) : ϕ∗(v) = 0}. As |U | = νϕ(0), according to
Observation 1.1, condition (i) holds. Clearly, a vertex v is an element of U if and only
if v is incident with an edge belonging to A := {e ∈ E(G) : ϕ(e) = 0}. Therefore, A is
an edge cover of G[U ] and so (ii) holds. Moreover,

d|E(G)|/2e ≥ εϕ(0) = |A| ≥ ρ(G[U ]) = |U | − α(G[U ])

which implies (iii).
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Similarly,
|E(G[U ])| ≥ |A| = εϕ(0) ≥ b|E(G)|/2c,

i.e., condition (iv) holds.
On the other hand, suppose that U is a set of vertices of a graph G which satisfies

(i)–(iv). According to (ii), E(G[U ]) is an edge cover of G[U ]. Moreover, by (iii),

ρ(G[U ]) = |U | − α(G[U ]) ≤ d|E(G)|/2e.

Therefore, there exists an edge cover A of G[U ] such that

b|E(G)|/2c ≤ |A| ≤ d|E(G)|/2e.

Consider the mapping ψ : E(G)→ {0, 1} defined by

ψ(e) =
{

0 when e ∈ A,
1 when e /∈ A.

Clearly, νψ(0) = |U | and εψ(0) = |A|. Thus, according to Observation 1.1, ψ is an edge
product cordial labeling of G.

For connected graphs we have the following result.

Corollary 2.2. Let G be a connected graph of order at least 3. Then G is an edge
product cordial graph if and only if there is a set U ⊂ V (G) such that

|U | ≤
⌈
|V (G)|/2

⌉
and

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
.

Proof. Assume that G is an edge product cordial graph. According to Theo-
rem 2.1, there is a set U ⊂ V (G) satisfying (i)–(iv). Conditions (i) and (iv) imply
|U | ≤

⌈
|V (G)|/2

⌉
and

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
.

On the other hand, suppose that there exists a set U ⊂ V (G) such that
|U | ≤

⌈
|V (G)|/2

⌉
and

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
. Let W be a subset of V (G) such

that |W | =
⌈
|V (G)|/2

⌉
and G[W ] has the largest possible size.

If w is an isolated vertex of G[W ], then E(G[W ]) = E(G[W − {w}]). Since G is
a connected graph, there is a vertex u ∈ V (G)−W adjacent to a vertex of W − {w}.
Set W ′ :=

(
W − {w}

)
∪ {u}. Clearly, |W ′| = |W | and

∣∣E(G[W ′])
∣∣ >

∣∣E(G[W − {w}])
∣∣ =

∣∣E(G[W ])
∣∣,

a contradiction. Thus, G[W ] contains no isolated vertex.
As G is a connected graph,

∣∣E(G)
∣∣ ≥

∣∣V (G)
∣∣− 1. Hence,

⌈
|E(G)|/2

⌉
≥
⌈
|V (G)|/2

⌉
− 1.

Since G[W ] contains no isolated vertex, α
(
G[W ]

)
≥ 1. Thus,

α
(
G[W ]

)
≥ 1 ≥

⌈
|V (G)|/2

⌉
−
⌈
|E(G)|/2

⌉
= |W | −

⌈
|E(G)|/2

⌉
.
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Let U ′ be a subset of V (G) such that U ⊆ U ′ and |U ′| =
⌈
|V (G)|/2

⌉
. Clearly,

∣∣E(G[W ])
∣∣ ≥

∣∣E(G[U ′])
∣∣ ≥

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
.

Therefore, the set W satisfies conditions (i)–(iv), and by Theorem 2.1, G is an edge
product cordial graph.

Example 2.3. Let G be a connected graph of order n, n ≥ 3. For every integer i,
1 ≤ i ≤ n, define the graph Gi, vertex vi, and integer δi recursively in the following
way.

Set G1 = G.
The minimum degree of Gi is denoted by δi. Let vi be a vertex of Gi such that

degGi
(vi) = δi and

min
{

degGi
(u) : u ∈ NGi

(vi)
}
≤ min

{
degGi

(u) : u ∈ NGi
(w)
}

for any vertex w ∈ V (Gi) of degree δi. Let Gi+1 be the subgraph of Gi induced by
V (Gi)− {vi} (i.e., Gi+1 = Gi − vi).

Clearly,
∑k
i=1 δi+ |E(Gk+1)| = |E(G)|, for each k, 1 ≤ k < n. Therefore, according

to Corollary 2.2, we have the following sufficient condition.

If
bn/2c∑

i=1
δi ≤

⌈
|E(G)|/2

⌉
, then G is an edge product cordial graph.

Note that using this condition we can detect almost all known edge product cordial
graphs (presented in [8, 9, 11–14]).

3. SOME CLASSES OF GRAPHS

3.1. DENSE GRAPHS

Theorem 3.1. Let G be an edge product cordial graph of order n. Then
∣∣E(G)

∣∣ ≤ 1 + dn/2e
(
dn/2e − 1

)
.

Proof. According to Theorem 2.1, there is a subset U of V (G) such that |U | =
dn/2e and

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
. Since any graph of order dn/2e has at

most dn/2e
(
dn/2e − 1

)
/2 edges, we have

1
2dn/2e

(
dn/2e − 1

)
≥
∣∣E(G[U ])

∣∣ ≥
⌊
|E(G)|/2

⌋
≥ |E(G)| − 1

2 ,

which implies the desired inequality.

It is proved in [12] that Kn, for n ≥ 4, is not edge product cordial. By Theorem 3.1,
we have immediately the following stronger result.
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Corollary 3.2. Let G be a graph of order n ≥ 4. If the minimum degree of G
is at least dn/2e, then G is not an edge product cordial graph.

A graph G is called bipartite if its vertex set can be partitioned into disjoint parts
V1, V2 such that every edge in G joins vertices of different parts.

Theorem 3.3. Let G be an edge product cordial bipartite graph of order n with parts
V1 and V2 where |V1| ≤ |V2|. Then the following statements hold:

1) If |V1| ≤ b(1 + n)/4c, then
∣∣E(G)

∣∣ ≤ 1 + 2|V1|
(
dn/2e − |V1|

)
.

2) If |V1| ≥ b(1 + n)/4c, then
∣∣E(G)

∣∣ ≤ 1 + 2b(1 + n)/4cdn/4e.
Proof. According to Theorem 2.1, there is a subset U of V (G) such that |U | = dn/2e
and

∣∣E(G[U ])
∣∣ ≥

⌊
|E(G)|/2

⌋
. Set U1 = U ∩ V1 and U2 = U ∩ V2. The graph G[U ] has

at most |U1| · |U2| = |U1|
(
dn/2e − |U1|

)
edges. Since f(x) = x

(
dn/2e − x

)
is a strictly

increasing function on the interval {x : 0 ≤ x ≤ dn/2e/2}, |U1| is an integer, and⌊
dn/2e/2

⌋
= b(1 + n)/4c, we consider the following two cases.

If |V1| ≤ b(1 + n)/4c, then G[U ] has at most |V1|
(
dn/2e − |V1|

)
edges. Therefore

|V1|
(
dn/2e − |V1|

)
≥
∣∣E(G[U ])

∣∣ ≥
⌊
|E(G)|/2

⌋
≥ |E(G)| − 1

2 ,

which implies ∣∣E(G)
∣∣ ≤ 1 + 2|V1|

(
dn/2e − |V1|

)
.

If |V1| ≥ b(1 + n)/4c, then the induced subgraph G[U ] has at most

b(1 + n)/4c
(
dn/2e − b(1 + n)/4c

)
= b(1 + n)/4cdn/4e

edges. Thus

b(1 + n)/4cdn/4e ≥
∣∣E(G[U ])

∣∣ ≥
⌊
|E(G)|/2

⌋
≥ |E(G)| − 1

2 ,

which implies ∣∣E(G)
∣∣ ≤ 1 + 2b(1 + n)/4cdn/4e.

It is proved in [12] that any complete bipartite graph Km,n, for m ≥ n ≥ 2, is not
edge product cordial. By Theorem 3.3 we have the following stronger result.

Corollary 3.4. Let G be a bipartite graph of order n with parts V1 and V2 where
2 ≤ |V1| ≤ |V2|. Let δi = min{deg(v) : v ∈ Vi}, i ∈ {1, 2} and suppose that at least one
of the following conditions is satisfied:

1) |V1| ≤ b(1 + n)/4c and δ1 ≥ 2 + |V2| − |V1|,
2) b(1 + n)/4c ≤ |V1| < n− 2dn/4e and δ2 ≥ b(1 + n)/4c,
3) |V1| ≥ n− 2dn/4e and δ2 ≥ 1 + b(1 + n)/4c.
Then G is not an edge product cordial graph.
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Proof. Suppose to the contrary that G is an edge product cordial graph.
If |V1| ≤ b(1 + n)/4c and δ1 ≥ 2 + |V2| − |V1|, then

|E(G)| ≥ |V1|δ1 ≥ |V1|
(
2 + |V2| − |V1|

)

= |V1|
(
2 + (n− |V1|)− |V1|

)
= 2|V1|

(
1 + n/2− |V1|

)

= |V1|+ 2|V1|
(
(1 + n)/2− |V1|

)
> 1 + 2|V1|

(
dn/2e − |V1|

)
,

a contradiction to Theorem 3.3.
If b(1 + n)/4c ≤ |V1| < n − 2dn/4e and δ2 ≥ b(1 + n)/4c, then the part V2

contains n− |V1| > 2dn/4e vertices, i.e., |V2| ≥ 1 + 2dn/4e. Thus, n ≥ 7 in this case.
Consequently

|E(G)| ≥|V2|δ2 ≥
(
1 + 2dn/4e

)
b(1 + n)/4c

=b(1 + n)/4c+ 2dn/4eb(1 + n)/4c > 1 + 2dn/4eb(1 + n)/4c,
a contradiction.

Now assume that |V1| ≥ n − 2dn/4e and δ2 ≥ 1 + b(1 + n)/4c. Since |V1| ≤ |V2|,
|V2| ≥ dn/2e ≥ 2dn/4e − 1. If |V2| ≥ 2dn/4e, then

|E(G)| ≥ |V2|δ2 ≥ 2dn/4e
(
1 + b(1 + n)/4c

)
> 1 + 2dn/4eb(1 + n)/4c,

a contradiction. If |V2| = 2dn/4e− 1, then there is a positive integer k such that either
|V1| = 2k, |V2| = 2k + 1 or |V1| = |V2| = 2k + 1. In both of these cases δ2 ≥ 1 + k
and so

|E(G)| ≥ |V2|δ2 ≥ (2k + 1)(1 + k) > 1 + 2(k + 1)k = 1 + 2dn/4eb(1 + n)/4c,
a contradiction.

3.2. REGULAR GRAPHS

Theorem 3.5. Let G be a connected d-regular graph of order n and size m, m > 1.
Then the following statements hold:
1) If n and m are both even, then G is not an edge product cordial graph.
2) If n is even and m is odd, then G is an edge product cordial graph only when G

contains a bridge e such that G− e has two components of order n/2.
3) If n is odd, then G is an edge product cordial graph only when there is a set

U ⊂ V (G) such that |{uv ∈ E(G) : u ∈ U, v /∈ U}| ≤ 2dd/4e and |U | = dn/2e.
Proof. As G is a d-regular graph, m = nd/2. Moreover, G is connected and so
|E(G[U ])| < |U |d/2 for every U , ∅ 6= U $ V (G).

Consider the following cases.
Case A. n ≡ m ≡ 0 (mod 2). Suppose to the contrary that G is an edge product
cordial graph. According to Corollary 2.2, there is a subset U of V (G) such that
|U | ≤ n/2 and |E(G[U ])| ≥ m/2. However,

|E(G[U ])| < |U |d/2 ≤ (n/2)d/2 = m/2,

a contradiction.



On edge product cordial graphs 697

Case B. n ≡ 0 (mod 2) and m ≡ 1 (mod 2). Suppose that G is an edge product cordial
graph. According to Corollary 2.2, there is a subset U of V (G) such that |U | ≤ n/2
and |E(G[U ])| ≥ (m− 1)/2. However,

|E(G[U ])| < |U |d/2 ≤ (n/2)d/2 = m/2.

Therefore, |U | = n/2 and |E(G[U ])| = (m− 1)/2 in this case. Then

|{uv ∈ E(G) : u ∈ U, v /∈ U}| = |U |d− 2|E(G[U ])| = 1,

i.e., there is a bridge e of G such that G − e has components induced by U and
V (G)− U where |U | = |V (G)− U | = n/2.

Now suppose that G contains a bridge e such that G− e has two components C ′
and C∗ of order n/2. Then |E(C ′)| ≥ (m − 1)/2 = dm/2e when |E(C ′)| ≥ |E(C∗)|.
Thus, there is a set U = V (C ′) such that |E(G[U ])| = |E(C ′)| ≥ dm/2e. According to
Corollary 2.2, G is an edge product cordial graph.
Case C. n ≡ 1 (mod 2). Suppose that G is an edge product cordial graph. By Corol-
lary 2.2, there is a subset U of V (G) such that |U | ≤ (n + 1)/2 and |E(G[U ])| ≥
bm/2c = bnd/4c. If |U | < (n+ 1)/2, then

|E(G[U ])| < |U |d/2 ≤
(
(n− 1)/2

)
d/2 ≤ bm/2c.

Therefore, |U | = (n+ 1)/2 and

|{uv ∈ E(G) : u ∈ U, v /∈ U}| = |U |d− 2|E(G[U ])|
≤ (n+ 1)d/2− 2bnd/4c = 2dd/4e.

Now suppose that there is a set U ⊂ V (G) such that |U | = dn/2e and
|{uv ∈ E(G) : u ∈ U, v /∈ U}| ≤ 2dd/4e. Then

|E(G[U ])| =
(
|U |d− |{uv ∈ E(G) : u ∈ U, v /∈ U}|

)
/2

≥
(
dn/2ed− 2dd/4e

)
/2 ≥ bm/2c,

and by Corollary 2.2, G is an edge product cordial graph.

3.3. GRAPH OPERATIONS

The union of two vertex disjoint graphs G and H is denoted by G ∪H.

Theorem 3.6. Let G1 and G2 be disjoint graphs without isolated vertices such that∣∣|V (G1)| − |V (G2)|
∣∣ ≤ 1. Then the union G1 ∪G2 is an edge product cordial graph.

Proof. The union of graphs G1 and G2 is denoted by H, i.e., H = G1 ∪G2. We can
assume, without loss of generality, that |E(G1)| ≥ |E(G2)|. Then

d|E(H)|/2e ≤ |E(G1)|.

Consider the following cases.
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Case A. d|E(H)|/2e ≥ ρ(G1). Set U := V (G1). Then

α(H[U ]) = α(G1) = |U | − ρ(G1) ≥ |U | − d|E(H)|/2e.
Therefore, condition (iii) holds. The other conditions of Theorem 2.1 are evident. So,
H is an edge product cordial graph in this case.
Case B. d|E(H)|/2e < ρ(G1). Let Ai, for i ∈ {1, 2}, be an edge cover of Gi having
ρ(Gi) edges. Then A := A1 ∪ A2 is an edge cover of H with ρ(H) edges. Therefore,
every component of H[A] is a star and so

|V (H[F ])| − 2 ≤ |V (H[F − {e}])| ≤ |V (H[F ])| − 1

for any e ∈ F ⊆ A.
Denote the edges of A by e1, e2, . . . , ek in such a way that i < j whenever ei ∈ A2

and ej ∈ A1. For t ∈ {0, 1, . . . , p}, where p = k − d|E(H)|/2e, set
Bt =

{
et+i : 1 ≤ i ≤ d|E(H)|/2e

}
.

As Bt and Bt+1 have the same cardinality and Bt+1 contains exactly one edge not
belonging to Bt,

|V (H[Bt])| − 1 ≤ |V (H[Bt+1])| ≤ |V (H[Bt])|+ 1

for every t, 0 ≤ t ≤ p− 1. Moreover, A2 ⊆ B0, Bp $ A1 and so

|V (H[B0])| ≥ |V (G2)| ≥ b|V (H)|/2c, |V (H[Bp])| < |V (G1)| ≤ d|V (H)|/2e.
Therefore, there is q such that |V (H[Bq])| = b|V (H)|/2c. Consider the mapping
ϕ : E(H)→ {0, 1} defined by

ϕ(e) =
{

0 when e ∈ Bq,
1 when e /∈ Bq.

Clearly, νϕ(0) = |V (H[Bq])| = b|V (H)|/2c and εϕ(0) = |Bq| = d|E(H)|/2e. Thus,
by Observation 1.1, ϕ is an edge product cordial labeling of H.

The direct product G × H of graphs G and H is a graph with the vertex set
V (G×H) = V (G)× V (H) and two vertices (u1, v1), (u2, v2) are joined by an edge in
G×H if and only if u1u2 ∈ E(G) and v1v2 ∈ E(H). It is proved in [16] that the direct
product of two path is edge product cordial. By Theorem 3.6 we have the following
stronger result.
Corollary 3.7. For i ∈ {1, 2}, let Gi be a connected bipartite graph with parts Ai, Bi.
If either |Ai| = |Bi| for some i ∈ {1, 2}, or |Ai| = |Bi|+ 1 for both i ∈ {1, 2}, then the
direct product G1 ×G2 is an edge product cordial graph.
Proof. The graph G1 ×G2 is a disconnected graph with two components. The first
component is of order |A1| · |A2|+ |B1| · |B2| and the second is of order |A1| · |B2|+
|B1| · |A2|. Thus, the order of first component and the order of second component
differ at most by 1. According to Theorem 3.6, G1 ×G2 is an edge product cordial
graph.
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The join G⊕H of the disjoint graphs G and H is the graph G ∪H together with
all edges joining vertices of V (G) and vertices of V (H).

Theorem 3.8. Let G1 and G2 be disjoint graphs such that

3 ≤ |V (G1)| ≤ |V (G2)| ≤ 3|V (G1)| − 2.

Then the join G1 ⊕G2 is not an edge product cordial graph.

Proof. The join of graphs G1 and G2 is denoted by H, i.e., H = G1 ⊕ G2. Set
n1 := |V (G1)|, n2 := |V (G2)|, n := |V (H)| = n1 + n2, k :=

⌊
dn/2e/2

⌋
. Then we have

k =
⌊⌈n

2

⌉
/2
⌋

=
⌊⌈
n1 + n2

2

⌉
/2
⌋
≤
⌊⌈
n1 + 3n1 − 2

2

⌉
/2
⌋

= n1 − 1.

Suppose to the contrary that H is an edge product cordial graph. According to
Corollary 2.2, there is a subset U of V (H) such that |U | ≤ dn/2e and |E(H[U ])| ≥
b|E(H)|/2c. The number of edges of G1 ∪G2 belonging to H[U ] is denoted by m, i.e.,
m =

∣∣(E(G1) ∪ E(G2)
)
∩ E(H[U ])

∣∣. Consider the following cases.
Case A. Suppose that dn/2e = 2k. Then 4k − 1 ≤ n ≤ 4k and k ≥ 2 in this case.
Moreover, |E(H[U ])| ≤ k2 +m and

|E(H)| ≥ n1n2 +m ≥ (k + 1)(n− k − 1) +m

≥ (k + 1)(4k − 1− k − 1) +m = 3k2 + k − 2 +m.

As |E(H[U ])| ≥ b|E(H)|/2c,

k2 +m ≥
⌊
(3k2 + k − 2 +m)/2

⌋
.

Therefore, 1 + 2(k2 +m) ≥ 3k2 + k − 2 +m and so m ≥ k2 + k − 3. Consequently,

|E(H)| ≥ 3k2 + k − 2 + (k2 + k − 3) = 4k2 + 2k − 5.

Then H[U ] has at least 2k2 + k− 3 edges. However, H[U ] has at most 2k vertices and
so

|E(H[U ])| ≤ 2k(2k − 1)/2 = 2k2 + k − 3 + (3− 2k),

a contradiction.
Case B. Suppose that dn/2e = 2k + 1 > 3. Then 4k + 1 ≤ n ≤ 4k + 2 and k ≥ 2.
Moreover, |E(H[U ])| ≤ k(k + 1) +m and

|E(H)| ≥ n1n2 +m ≥ (k + 1)(n− k − 1) +m

≥ (k + 1)(4k + 1− k − 1) +m = 3k2 + 3k +m.

As |E(H[U ])| ≥ b|E(H)|/2c,

k2 + k +m ≥
⌊
(3k2 + 3k +m)/2

⌋
.
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Therefore, 1 + 2(k2 + k +m) ≥ 3k2 + 3k +m and so m ≥ k2 + k − 1. Consequently,

|E(H)| ≥ 3k2 + 3k + (k2 + k − 1) = 4k2 + 4k − 1.

Then H[U ] has at least 2k2 + 2k− 1 edges. However, H[U ] has at most 2k+ 1 vertices
and so

|E(H[U ])| ≤ (2k + 1)2k/2 = 2k2 + 2k − 1 + (1− k),

a contradiction.
Case C. Suppose that dn/2e = 3. Then n = 6 and k = 1 in this case. Moreover,
|E(H[U ])| ≤ 1 · 2 +m and |E(H)| ≥ 3 · 3 +m = 9 +m. As |E(H[U ])| ≥ b|E(H)|/2c,
2 + m ≥

⌊
(9 + m)/2

⌋
. Thus, 1 + 2(2 + m) ≥ 9 + m and so m ≥ 4. Consequently,

|E(H)| ≥ 9 + 4 = 13. Then H[U ] has at least 6 edges. However, H[U ] has at most 3
vertices and so |E(H[U ])| ≤ 3, a contradiction.

3.4. MAXIMAL GRAPHS

A property P of graphs is called hereditary if every subgraph of any graph with
property P also has property P (see [1]). A graph G is called P-maximal if it has
property P and it looses this property after adding any edge from the complement
of G. Let k, q, p (k > 0, p > 0) be integers; a hereditary property P is said to be
(k, q, p)-restrictive if every P-maximal graph of order n, n ≥ p, has kn + q edges.
We are able to prove the following result.

Theorem 3.9. Let P be a (k, q, p)-restrictive hereditary property. If G is a connected
P-maximal graph of order n, n ≥ 4, then the following statements hold:

1) If p ≤ n, then G is an edge product cordial graph only when it contains a subgraph
of order dn/2e and size at least b(kn+ q)/2c.

2) If p < n ≤ 2k, then G is not an edge product cordial graph.
3) If 2p ≤ n ≡ 0 (mod 2) and dq/2e < 0, then G is not an edge product cordial graph.
4) If 2p − 1 ≤ n ≡ 1 (mod 2) and d(q + k)/2e < 0, then G is not an edge product

cordial graph.

Proof. If n ≥ p, then |E(G)| = kn+ q. Therefore, the first statement is an immediate
consequence of Corollary 2.2.

If p < n ≤ 2k, then any subgraph of G on n− 1 vertices has at most k(n− 1) +
q = (kn + q) − k edges. It follows that the minimum degree of G is at least k. As
k = d2k/2e ≥ dn/2e, according to Corollary 3.2, G is not edge product cordial.

If 2p ≤ n ≡ 0 (mod 2) and dq/2e < 0, then any subgraph of G on at most n/2
vertices has at most kn/2 + q edges. However,

⌊
|E(G)|/2

⌋
=
⌊
(kn+ q)/2

⌋
= kn/2 + bq/2c = kn/2 + q − dq/2e > kn/2 + q.

Therefore, by Corollary 2.2, G is not an edge product cordial graph.
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If 2p − 1 ≤ n ≡ 1 (mod 2) and d(q + k)/2e < 0, then any subgraph of G on at
most dn/2e vertices has at most kdn/2e+ q edges. However,

⌊
|E(G)|/2

⌋
=
⌊
(kn+ q)/2

⌋
=
⌊(
k(n+ 1) + (q − k)

)
/2
⌋

= kdn/2e+ b(q − k)/2c = kdn/2e+
⌊(

2q − (q + k)
)
/2
⌋

= kdn/2e+ q − d(q + k)/2e > kdn/2e+ q.

Thus, by Corollary 2.2, G is not an edge product cordial graph.

A graph G is called k-degenerate if every subgraph of G has minimum degree at
most k (we also say that G has the property Dk). The basic properties of maximal
k-degenerate (Dk-maximal) graphs have been introduced in [6, 7]. Inter alia it was
proved:
1) Let G be a maximal k-degenerate graph of order n, n ≥ k + 1. Then the minimum

degree of G is equal to k and |E(G)| = kn− k(k + 1)/2.
2) Let G be a graph of order n, n ≥ k+ 1, and v ∈ V (G) be a vertex of degree k. Then

G is a maximal k-degenerate graph if and only if G− v is maximal k-degenerate.
Therefore, Dk is a (k,−k(k + 1)/2, k)-restrictive property. Moreover, every maxi-
mal k-degenerate graph of order n contains an induced subgraph which is a maximal
k-degenerate graph of order m, 1 ≤ m ≤ n.

Note that maximal 1-degenerate graphs are trees. In [11] Vaidya and Barasara
characterized edge product cordial maximal 1-degenerate graphs (trees). In [14] they
also investigated the edge product cordiality of some classes of maximal 2-degenerate
graphs (square and total graphs of path). By Theorem 3.9 we have immediately the
following corollary.
Corollary 3.10. Let G be a maximal k-degenerate graph of order n, n > k. Then G
is an edge product cordial graph if and only if either k = 1 and n ≥ 3 or k = 2 and
n ≡ 1 (mod 2).

We say that a graph G has the property D+
k , if it is k-degenerate or it contains

an edge e such that G− e is a k-degenerate graph. Clearly, any D+
k -maximal graph of

order at least k + 2 is a Dk-maximal graph with one edge added (D+
1 -maximal graphs

of order at least 3 are unicyclic graphs). Thus, D+
k is a (k, 1−k(k+1)/2, k+2)-restrictive

property.
Vaidya and Barasara [11] investigated the edge product cordiality of unicyclic

graphs. Similarly, Prajapati and Patel [8] investigated the edge product cordiality
of some D+

2 -maximal graphs (sunflowers). By Theorem 3.9 we have immediately the
following result.
Corollary 3.11. Let G be a D+

k -maximal graph of order n, n ≥ k + 2. Then G is
an edge product cordial graph if and only if one of the following conditions is satisfied:
1) k = 1 and n ≡ 1 (mod 2),
2) k = 1, n ≡ 0 (mod 2), and G contains a cycle of order at most n/2,
3) k = 2, n ≡ 1 (mod 2), and G contains an induced subgraph of order at most dn/2e

with minimum degree 3.
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It is well-known that maximal outerplanar (maximal planar) graphs of order n,
n ≥ 2 (n ≥ 3) have 2n − 3 (3n − 6) edges. According to Theorem 3.9, we get the
following corollary.

Corollary 3.12.

1) A maximal outerplanar graph of order n, n ≥ 2, is edge product cordial if and only
if n is odd.

2) A maximal planar graph of order n, n ≥ 3, is edge product cordial if and only if
n = 3.

3.5. PRODUCT CORDIAL GRAPHS

A product cordial labeling of a graph G is a mapping ψ : V (G)→ {0, 1} such that if
each edge uv ∈ E(G) is assigned the label ψ(u)ψ(v), the number of vertices labeled
with 0 and the number of vertices labeled with 1 differ by at most 1, and the number
of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1
(see [10]). A graph with a product cordial labeling is called a product cordial graph.

We conclude this paper with the following assertion.

Theorem 3.13. Let G be a connected product cordial graph of order n, n ≥ 3. Then
G is an edge product cordial graph.

Proof. Suppose that ψ is a product cordial labeling of G. Set

U := {u ∈ V (G) : ψ(u) = 1}.

Clearly, an edge e ∈ E(G) is labeled with 1 if and only if e ∈ E
(
G[U ]

)
. Therefore,

bn/2c ≤ |U | ≤ dn/2e and
⌊
|E(G)|/2

⌋
≤
∣∣E(G[U ])

∣∣ ≤
⌈
|E(G)|/2

⌉
.

According to Corollary 2.2, G is an edge product cordial graph.
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