PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on constitutive behavior of Ti-45Nb alloy under transversal ultrasonic vibration-assisted compression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic vibration technology has been widely applied in plastic forming processes due to its advantages of material properties improvement. In this study, a transverse ultrasonic vibration-assisted compression (TUVC) system with the range of vibration amplitude from 16 to 48 µm is developed to compress the difficult-to-deformation materials. The experiment found that the temperature of the compressed sample with the vibration amplitude of 38 µm arrived at 164 ℃, hence the current constitutive models are deficient for the description of TUVC deformation behavior with the large vibration amplitudes. The results show that the flow stress declines under the coupling action of volume effect and surface effect, especially the amplitude is larger than 38 µm. To accurately depict the constitutive behavior of titanium alloy under TUVC, a hybrid constitutive model considering the difference of softening mechanism was proposed based on crystal plasticity theory, and the predicted curves are in good agreement with experimental results. Finally, the microstructure further revealed the differences of softening mechanism in TUVC, and numerous secondary α phase was precipitated. Consequently, the studies provide an insight into the deformation mechanism of TUVC and promote the application of ultrasonic vibration-assisted forming for the difficult-to-deformation alloy.
Rocznik
Strony
518--532
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • [1] Blaha F, Langenecker B. Elongation of zinc monocrystals under ultrasonic action. Die Naturwissenschaften. 1955;42:556.
  • [2] Djavanroodi F, Ahmadian H, Naseri R, Koohkan K, Ebra-himi M. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Arch Civ Mech Eng. 2016;16(3):249–55.
  • [3] Nie H, Chi C, Chen H, Li X, Liang W. Microstructure evolution of Al/Mg/Al laminates in deep drawing process. J Mater Res Tech-nol. 2019;8:5325–35.
  • [4] Cheng CC, Wu YL. Diagnosis of multi-stage injection molding process by ultrasonic technology at a T-shape extension nozzle. J Mater Process Technol. 2020;282:116650.
  • [5] Lou Y, Liu X, He J, Long M. Ultrasonic-assisted extrusion of ZK60Mg alloy micropins at room temperature. Ultrasonics. 2018;83:194–202.
  • [6] Verma GC, Pandey PM, Dixit US. Estimation of workpiece-temperature during ultrasonic-vibration assisted milling considering acoustic softening. Int J Mech Sci. 2018;140:547–56.
  • [7] Tang J, Liu D, Tang C, Zhang X, Xiong H, Tang B. Tribology behavior of double-glow discharge Mo layers on titanium alloy in aviation kerosene environment. Trans Nonferrous Metals Soc China. 2012;22:1967–74.
  • [8] Bong HJ, Yoo DH, Kim D, Kwon Y-N, Lee J. Correlative study on plastic response and formability of Ti-6Al-4V sheets under hot forming conditions. J Manuf Process. 2020;58:775–86.
  • [9] Liu T, Lin J, Guan Y, Xie Z, Zhu L, Zhai J. Effects of ultrasonic vibration on the compression of pure titanium. Ultrasonics. 2018;89:26–33.
  • [10] Liu S, Shan X, Guo K, Yang Y, Xie T. Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics. 2018;83:60–7.
  • [11] Zhao J, Liu Z. Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti-6Al-4V. Mater Des. 2016;107:238–49.
  • [12] Zhou H, Cui H, Qin Q-H, Wang H, Shen Y. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing. Mater Sci Eng A. 2017;682:376–88.
  • [13] Sedaghat H, Xu W, Zhang L. Ultrasonic vibration-assisted metal forming: constitutive modelling of acoustoplasticity and applications. J Mater Process Technol. 2019;265:122–9.
  • [14] Xie Z, Guan Y, Lin J, Zhai J, Zhu L. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model. Ultrasonics. 2019;96:1–9.
  • [15] Prabhakar A, Verma GC, Krishnasamy H, Pandey PM, Lee MG, Suwas S. Dislocation density based constitutive model for ultra-sonic assisted deformation. Mech Res Commun. 2017;85:76–80.
  • [16] Yao Z, Kim G-Y, Wang Z, Faidley L, Zou Q, Mei D, Chen Z. Acoustic softening and residual hardening in aluminum: modeling and experiments. Int J Plast. 2012;39:75–87.
  • [17] Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816–25.
  • [18] Nemat-Nasser S, Guo WG, Nesterenko VF, Infrakanti SS, Gu YB. Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling. Mech Mater. 2001;33:425–39.
  • [19] Gao CY, Zhang LC. Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int J Plast. 2012;32–33:121–33.
  • [20] Gao CY, Zhang LC, Yan HX. A new constitutive model for HCP metals. Mater Sci Eng A. 2011;528:4445–52.
  • [21] Orowan E. Problems of plastic gliding. Proc Phys Soc. 1940;52:8.
  • [22] Kocks U. Constitutive behaviour based on crystal plasticity. Berlin: Springer; 1987.
  • [23] Patra A, Zhu T, McDowell DL. Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures. Int J Plast. 2014;59:1–14.
  • [24] Gu B-P, Hu X, Zhao L, Kong D-J, Yang Z-S, Lai J-T, Pan L. Effect of multidimensional ultrasonic-assisted pulsed-laser surface irradiation on residual stress in AISI 1045 steel. J Clean Prod. 2017;143:1183–90.
  • [25] Pohlman R, Lehfeldt E. Influence of ultrasonic vibration on metallic friction. Ultrasonics. 1966;4:178–85.
  • [26] Kumari M, Ray KK. Effect of the mode of deformation on activation volume of a material. Mater Sci Eng A. 2016;650:335–44.
  • [27] Choi I-C, Brandl C, Schwaiger R. Thermally activated dislocation plasticity inbody-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater. 2017;140:107–15.
  • [28] Elangovan S, Semeer S, Prakasan K. Temperature and stress distribution in ultrasonic metal welding-An FEA-based study. J Mater Process Technol. 2009;209:1143–50.
  • [29] Yao Z, Kim G-Y, Faidley L, Zou Q, Mei D, Chen Z. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol. 2012;212:640–6.
  • [30] Hung J-C, Lin C-C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater Des. 2013;45:412–20.
  • [31] Meng B, Cao BN, Wan M, Wang CJ, Shan DB. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet. Int J Mech Sci. 2019;157–158:609–18.
  • [32] Campbell J, Ferguson W. The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag. 1970;21:63–82.
  • [33] De Vries E. Mechanics and mechanism of ultrasonic metal welding, dissertation, The Ohio State University. 2004.
  • [34] Daud Y, Lucas M, Huang ZH. Superimposed ultrasonic oscillations in compression tests of aluminium. Ultrasonics. 2006;44:511–5.
  • [35] Statnikov ES, Korolkov OV, Vityazev VN. Physics and mechanism of ultrasonic impact. Ultrasonics. 2006;44:533–8.
  • [36] Chu Y, Li J, Zhao F, Tang B, Kou H. Flow behavior and constitutive relationship for elevated temperature compressive deformation of a high Nb containing TiAl alloy with (α2+ γ) microstructure. Mater Lett. 2018;210:58–61.
  • [37] Delshadmanesh M, Khatibi G, Ghomsheh MZ, Lederer M, Zehetbauer M, Danninger H. Influence of microstructure on fatigue of biocompatible β-phase Ti-45Nb. Mater Sci Eng A. 2017;706:83–94.
  • [38] Kara G, Purcek G. Growth kinetics and mechanical characterization of boride layers formed on β-type Ti-45Nb alloy. Surf Coat Technol. 2018;352:201–12.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f22c0a50-a592-499d-98ce-9372319a9534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.