Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper aims to reveal the influence of stress wave incidents at different angles on surrounding rock and supporting mortar. The split Hopkinson pressure bar device with a diameter of 50 mm was used to carry out the spall failure test of rock-mortar composite specimens under the incident stress wave at the angel of 30°, 45°, 60°, and 90°, and the spall failure process of the specimens was recorded by a high-speed camera. The test results show that the incident angle of the stress wave is an important factor in determining the initial spalling position and spalling strength. Oblique incidence increases the number of reflections of the stress wave in mortar resulting in the stress state of mortar being different. Under the same impact conditions, with the decrease of the incident angle, the distance between the initial spalling position and the free end of the specimen increases, and the maximum initial spalling position is obtained at the incident angle of 30°. The incident angle is positively correlated with the specimen spalling strength, and the maximum spall strength is obtained at the incident angle of 90°. In addition, the simulation results provided by Particle Flow Code were in good agreement with the test results. The simulation reflects that the spalling failure degree is affected by the incident angle of the stress wave, and the number of spalling layers of the specimens increases with the increase of the oblique incident angle. This paper can provide a reference for the excavation support design of underground engineering.
Czasopismo
Rocznik
Tom
Strony
art. no. e104, 2024
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
autor
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
autor
- China Bluestar Chonfar Engineering and Technology Co., Ltd, Changsha 410083, Hunan, China
autor
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
autor
- Work Safety Key Laboratory On Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
autor
- School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
- Laboratory 3SR, CNRS UMR 5521, Grenoble Alpes University, 38000 Grenoble, France
Bibliografia
- 1. Xie HP, Zhu JB, Zhou T, Zhang K, Zhou CT. Conceptualization and preliminary study of engineering disturbed rock dynamics. Geomech Geophys Geo-Energy Geo-Resour. 2020;6:1-14. https://doi.org/10.1007/s40948-020-00157-x.
- 2. Xia KW, Yao W. Dynamic rock tests using split Hopkinson (Kolsky) bar system - a review. J Rock Mech Geotech Eng. 2015;7(1):27-59. https://doi.org/10.1016/j.jrmge.22014.07.008.
- 3. Zuo JJ, Yang RS, Gong M, Ma XM, Wang YB. Fracture characteristics of iron ore under uncoupled blast loading. Int J Min Sci Technol. 2022;32(4):657-67. https://doi.org/10.1016/j.ijmst.2022.03.008.
- 4. Feng XT, Liu JP, Chen BR, Xiao YX, Feng GL, Zhang FP. Monitoring, warning, and control of rockburst in deep metal mines. Engineering. 2017;3(4):538-45. https://doi.org/10.1016/J.ENG.2017.04.013.
- 5. Sagar RV. A parallel between earthquake sequences and acoustic emissions released during fracture process in reinforced concrete structures under flexural loading. Constr Build Mater. 2016;114:772-93. https://doi.org/10.1016/j.conbuildmat.2016.03.082.
- 6. Zhou T, Zhu JB, Xie HP. Mechanical and volumetric fracturing behaviour of three-dimensional printing rock-like samples under dynamic loading. Rock Mech Rock Eng. 2020;53:2855-64. https://doi.org/10.1007/s00603-020-02084-5.
- 7. Li DY, Han ZY, Li XB, Cao WZ, Wu CQ. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests. Int J Min Sci Technol. 2022;32(4):793-806. https://doi.org/10.1016/j.ijmst.2022.05.008.
- 8. Wang LL. Unloading waves and unloading failures in structures under impact loading. Int J Impact Eng. 2004;30(8-9):889-900. https://doi.org/10.1016/j.ijimpeng.2003.10.031.
- 9. Hamidi F, Carré H, Hamami AEA, Aït-Mokhtar A, La Borderie C, Pimienta P. Critical review of the use of fiber-reinforced concrete against spalling. Fire Saf J. 2003;5:103988. https://doi.org/10.1016/j.firesaf.2023.103988.
- 10. Gong FQ, Luo Y, Li XB, Si XF, Tao M. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn Undergr Sp Technol. 2018;81:413-27. https://doi.org/10.1016/j.tust.2018.07.035.
- 11. Kaiser PK, Cai M. Design of rock support system under rockburst condition. J Rock Mech Geotech Eng. 2012;4(3):215-27. https://doi.org/10.3724/SP.Jht.1235.2012.00215.
- 12. Davison L, Stevens AL, Kipp ME. Theory of spall damage accumulation in ductile metals. J Mech Phys Solids. 1997;25(1):11-28. https://doi.org/10.1016/0022-5096(77)90017-5.
- 13. Rauenzahn RM, Tester JW. Rock failure mechanisms of flame-jet thermal spallation drilling-theory and experimental testing. Int J Rock Mech Min Sci Geomech Abstr. 1989;26(5):381-99. https://doi.org/10.1016/0148-9062(89)90935-2.
- 14. Bai YL, Ke FJ, Xia MF. Formulation of statistical evolution of microcracks in solids. Acta Mech Sin. 1991;7(1):59-66. https://doi.org/10.1007/BF02486597.
- 15. Wang LL. Influences of Stress Wave propagation upon studying dynamic response of materials at high strain rates. J Beijing Inst Technol. 2004;13(3):225-35. https://doi.org/10.3969/j.issn.1004-0579.2004.03.001.
- 16. Antoun T. Spall fracture. New York: Springer Science & Business Media. 2003.
- 17. Teresa GDR. Jesusr RP (2007) Elastic wave propagation in cylindrical bars after brittle failures: application to spalling tests. Int J Impact Eng. 2007;34(2):377-93. https://doi.org/10.10016/j.ijimpeng.2005.07.007.
- 18. Zhang L, Hu SS, Chen DX, Yu ZQ, Liu F. An experimental technique for spalling of concrete. Exp Mech. 2009;49:523-32. https://doi.org/10.1007/s11340-008-9159-8.
- 19. Li XB, Tao M, Gong FQ, Du K, Yin ZQ. Theoretical and experimental study of hard rock spalling failure under impact dynamic loading. Chin J Rock Mech Eng. 2011;30(6):1081-8.
- 20. Zhao HT, Tao M, Li XB, Cao WZ, Wu CQ. Estimation of spalling strength of sandstone under different pre-confining pressure by experiment and numerical simulation. Int J Impact Eng. 2019;133: 103359. https://doi.org/10.1016/j.ijimpeng.2019.103359.
- 21. Huang LQ, Wang J, Wang SF, Momeni A. Spalling fracture mechanism of granite subjected to dynamic tensile loading. Trans Nonferrous Metals Soc China. 2021;31(7):2116-27. https://doi.org/10.1016/S1003-6326(21)65642-X.
- 22. Fan LF, Yang QH, Du XL. Spalling characteristics of high-temperature treated granitic rock at different strain rates. J Rock Mech Geotech Eng. 2003. https://doi.org/10.1016/j.jrmge.2023.05.016.
- 23. Guo TF, Liu KW, Ma SF, Zhou KF, Qiu T. Dynamic fracture behavior and fracture toughness analysis of rock-concrete bimaterial with interface crack at different impact angles. Constr Build Mater. 2022;356: 129286. https://doi.org/10.1016/j.conbuildmat.2022.129286.
- 24. Guo TF, Liu KW, Li X, Jin P, Yang JC, Zhang AM, Zou LS. Effect of crack angle and concrete strength on the dynamic fracture behavior of rock-based layered material containing a preexisting crack. Arch Civ Mech Eng. 2023;23(3):198. https://doi.org/10.1007/s43452-023-00741-4.
- 25. Gong FQ, Si XF, Li XB, Wang SY. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions. Rock Mech Rock Eng. 2019;52:1459-74. https://doi.org/10.1007/s00603-018-1660-5.
- 26. Gong FQ, Wu WX, Li TB, Si XF. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states. Int J Rock Mech Min Sci. 2019;122: 104081. https://doi.org/10.1016/j.ijrmms.2019.104081.
- 27. Zhu WC, Pang MZ, Huang ZP, Tang CA. Numerical simulation on dynamic rock spalling. J Northeast Univ (Nat Sci). 2006;27(5):552.
- 28. Zuo YJ, Tang CA, Zhu WC, Li DY, Li SC. Numerical analysis of tunnel reinforcing influences on failure process of surrounding rock under explosive stress waves. J Cent South Univ Technol. 2008;15(5):632-8. https://doi.org/10.1007/s11771-008-0118-4.
- 29. Wang SM, Wang JQ, Xiong XR, Chen ZH, Zhou Gui YL, J,. Effect of oblique incident wave perturbation on rock spalling: An insight from DEM modelling. J Cent South Univ. 2023;30(6):1981-92. https://doi.org/10.1007/s11771-023-5354-0.
- 30. Ahmed L, Ansell A. Vibration vulnerability of shotcrete on tunnel walls during construction blasting. Tunn Undergr Sp Technol. 2014;42:105-11. https://doi.org/10.1016/j.tust.2014.02.008.
- 31. Mitelman A, Elmo D. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach. J Rock Mech Geotech Eng. 2014;6(6):565-73. https://doi.org/10.1016/j.jrmge.2014.09.002.
- 32. Mitelman A, Elmo D. Analysis of tunnel support design to with-stand spalling induced by blasting. Tunn Undergr Sp Technol. 2016;51:354-61. https://doi.org/10.1016/j.tust.2015.10.006.
- 33. Luo L, Li XB, Dong LJ, Tao M. Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads. Tunn Undergr Sp Technol. 2017;65:215-24. https://doi.org/10.1016/j.tust.2017.03.005.
- 34. Li XB. The basis and application of rock dynamics. Beijing: Science Press; 2014.
- 35. Li J. Hao H (2014) Numerical study of concrete spall damage to blast loads. Int J Impact Eng. 2014;68:41-55. https://doi.org/10.1016/j.ijimpeng.2014.02.001.
- 36. Kolsky H. Stress waves in solids. Translated by WANG Ren. Beijing: Science Press; 1966.
- 37. Fan LF, Jiang F, Wang M. Critical angles of obliquely incident stress wave through a single joint with different mediums on both sides. Rock Mech Rock Eng. 2022;55(6):3317-29. https://doi.org/10.1007/s00603-022-02840-9.
- 38. McVay MK. Spall damage of concrete structures. Hattiesburg: Department of the Army; 1988.
- 39. Potyondy DO, Cundall PA. A bonded-particle model for rock[J]. Int J Rock Mech Min Sci. 2004;41(8):1329-64. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- 40. Li X, Li C, Cao W, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads[J]. Int J Rock Mech Min Sci. 2018;104:131-46. https://doi.org/10.1016/j.ijrmms.2018.02.018.
- 41. Luo Y, Wang G, Li X. Analysis of energy dissipation and crack evolution law of sandstone under impact load. Int J Rock Mech Min Sci. 2022;132: 104359. https://doi.org/10.1016/j.ijrmms.2020.104359.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2257c0c-bfd1-419e-a730-422c268ce4df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.