Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New satellite-based techniques open up new horizons to researchers and local communities. Concurrently, however, requirements and expectations with regard to satel-lite-based remote sensing products are increasingly higher. By relying on satellite-derived information, environmental observations can cover areas of a few to several metres resolution. Here we are dealing with free-of-charge and generally available sources of satellite-based information. The Piaśnica River mouth area was selected as an observation site representing a highly dynamic morphological transect. The paper compares products of cloud cover detection, supplied with data and available in the Copernicus database for a local area in the coastal zone of the Baltic Sea. The absolute difference did not exceed 5%, which confirms a high efficiency of the solutions offered. More than 96% of the clouded area determined for the Sentinel-2/MSI (Multispectral Instrument) was correctly identified when compared with supervised observations. The rate was lower (92%) for the Sentinel-3/OLCI (Ocean and Land Colour Instrument). It was eventually concluded that, at the local level, successful observations can be conducted using the cloud cover map supplied with the satellite data. At the same time, the analyses presented do not rule out further efforts to, e.g., increase the accuracy and speed of the analyses.
Czasopismo
Rocznik
Tom
Strony
283--297
Opis fizyczny
Bibliogr. 26 poz., fot., map., rys., tab.
Twórcy
autor
- Division of Physical Oceanography, Institute of Oceanography, University of Gdańsk Gdynia, Poland
Bibliografia
- [1]. Amin, R., Lewis, D., Gould, R. W., Hou, W., Lawson, A., Ondrusek, M. & Arnone, R. (2014). Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO. IEEE Transactions on Geoscience and Remote Sensing. 52(5). 2646-2653. doi: 10.1109/TGRS.2013.2264166
- [2]. Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. (2007). GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23-28 July 2007.
- [3]. Baetens, L., Desjardins, C. & Hagolle O. (2022). Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sensing. 11(4): 433. DOI:10.3390/rs11040433
- [4]. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S. & Lu, M. (2015). Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens., 103, 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
- [5]. Choi, Y-J., Ban, H-J., Han, H-J. & Hong S. (2022). A Maritime Cloud-Detection Method Using Visible and Near-Infrared Bands over the Yellow Sea and Bohai Sea. Remote Sensing. 14(3): 793. DOI:10.3390/rs14030793
- [6]. Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D. & Knaeps E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine water. Remote Sensing of Environment. 156: 157-168. DOI:10.1016/j.rse.2014.09.020
- [7]. EO Research Team, (2020). Cloud Masks at Your Service. https://medium.com/sentinel-hub/cloud-masks-at-your-service-6e5b2cb2ce8a (accessed 25 July 2022).
- [8]. Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C. & Boyd, D.S. (2006). Training set size requirements for the classification of a specific class. Remote Sens. Environ. 104, 1-14. doi:10.1016/j.rse.2006.03.004
- [9]. Hollstein, A.; Segl, K.; Guanter, L.; Brell, M. & Enesco, M. (2016). Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote Sens. 8, 666. https://doi.org/10.3390/rs8080666
- [10]. Gascon, F.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; Languille, F.; Alhammoud, B.; Viallefont, F.; Bieniarz, J.; Pflug, B.; Clerc, S.; Pessiot, L.; Trémas, T.; Cadau, E.; De Bonis, R.; Isola, C.; Martimort, P. & Fernandez, V. (2016). Copernicus Sentinel-2 Calibration and Products Validation Status. Preprints, 2016100078 (doi: 10.20944/preprints201610.0078.v1)
- [11]. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D. & Rodes, I. (2017). Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens., 9, 95, doi:10.3390/rs9010095
- [12]. Kowalewski, M. (1997). A three-dimensional, hydrodynamic model of the Gulf of Gdańsk. Oceanol. Stud., 26(4): 77-98.
- [13]. Krężel, A., Kozłowski, Ł. & Paszkuta, M. (2008). A simple model of light transmission through the atmosphere over the Baltic Sea utilising satellite data, Oceanologia. 50(2): 125-146
- [14]. Krężel, A.& Paszkuta, M. (2011). Automatic Detection of Cloud Cover over the Baltic Sea. J. Atmos. Ocean. Technol. 2011, 28, 1117-1128. https://doi.org/10.1175/JTECH-D-10-05017.1.
- [15]. Louis, J., (2021). Sentinel-2 Level-2A Algorithm Theoretical Basis Document. https://sentinels.copernicus.eu/documents/247904/446933/Sentinel-2-Level-2A-Algorithm-Theoretical-Basis-Document-ATBD.pdf (accessed 25 July 2022).
- [16]. Lu, S., He, M., He, S., He, S., Pan, Y., Yin, W. & Li, P. (2021). An Improved Cloud Masking Method for GOCI Data over Turbid Coastal Waters, Remote Sensing, 13(14): 2722. DOI:10.3390/rs13142722
- [17]. Mieslinger, T., Stevens, B., Kölling, T., Brath, M., Wirth, M. &Buehler, S. A. (2022). Optically thin clouds in the trades, Atmos. Chem. Phys., 22, 6879-6898, https://doi.org/10.5194/acp-22-6879-2022
- [18]. Nechad, B., Ruddick, K.G. & Park, Y. (2010). Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters, Remote Sensing of Environment. 114: 854-866. DOI:10.1016/j.rse.2009.11.022
- [19]. Paszkuta, M., Krężel, A. & Ryłko N. (2022). Application of shape moments for cloudiness assessment in marine environmental research. Remote Sensing. 14(4).883: 1-18. DOI:10.3390/rs14040883
- [20]. Paszkuta, M., Zapadka, T. & Krężel, A. (2021). Diurnal variation of cloud cover over the Baltic Sea. Oceanologia. 20: 1-13. DOI:10.1016/j.oceano.2021.12.005
- [21]. Paszkuta, M., Zapadka, T. & Krężel, A. (2019). Assessment of cloudiness for use in environmental marine research. International Journal of Remote Sensing. 40(24): 9439-9459. DOI: 10.1080/01431161.2019.1633697
- [22]. Stehman, S.V. (2009). Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243-5272. https://doi.org/10.1080/01431160903131000
- [23]. Wevers, J., Müller, D., Scholze, J., Kirches, G., Quast, R. & Brockmann, C., 2021. IdePix forSentinel-2 MSI algorithm theoretical basis document (version 1.0). Zenodo. https://doi.org/10.5281/zenodo.5788067
- [24]. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M & Zapadka T. (2011a). SatBaltic - a Baltic environmental satellite remote sensing system- an ongoing project in Poland, Part 1: Assumptions, scope and operating range. Oceanologia. 53(4): 897-924. DOI:10.5697/oc.53-4.925
- [25]. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M. & Zapadka, T. (2011b). SatBaltic - a Baltic environmental satellite remote sensing system- an ongoing project in Poland, Part 2: Practical applicability and preliminary results. Oceanologia. 53(4): 925-958. DOI:10.5697/oc.53-4.897
- [26]. Zapadka, T., Krężel, A., Paszkuta, M. & Darecki, M. (2015). Daily radiation budget of the Baltic sea surface from satellite data. Polish Maritime Research. 22(3): 50-56. DOI:10.1515/pomr-2015-0056
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f223a87e-2a38-4e30-aae5-16723c47bb04