PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pervaporative desulfurization of gasoline : separation of thiophene/n-heptane mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Perwaporacyjne odsiarczanie benzyny : separacja mieszanin tiofen/n-heptan
Języki publikacji
EN
Abstrakty
EN
This paper presents the recent advances in pervaporative reduction of sulfur content in gasoline. Methods of preliminary selection of membrane active layer material are presented. Interactions between gasoline components (typical hydrocarbon and sulfur species) and membranes are showed. Influence of pervaporation process parameters i.e. feed temperature, downstream pressure and feed flow rate on the separation efficiency is discussed. Investigations of the influence of sulfur concentration in fluid catalytic cracking (FCC) gasoline on membrane performance have been conducted. A series of PV tests was carried out to investigate the separation properties of the commercial composite membrane with an active layer made of poly(dimethylsiloxane) and to determine the efficiency of organic sulphur compound (thiophene) removal from model thiophene/n-heptane mixture depending on its concentration.
PL
W pracy zaprezentowano dotychczasowe osiągnięcia w perwaporacyjnym odsiarczaniu benzyny krakingowej. Przedstawiono kryteria wstępnego doboru materiału warstwy aktywnej membran. Omówiono ponadto wpływ typowych węglowodorów oraz związków siarkoorganicznych obecnych w benzynie krakingowej na selektywność i właściwości transportowe membran jak również wpływ parametrów procesowych (temperatury nadawy, ciśnienia po stronie permeatu oraz szybkości przepływu nadawy) na efektywność procesu perwaporacyjnego odsiarczania. W pracy przedstawiono możliwość zastosowania komercyjnych membran kompozytowych z warstwą aktywną wykonaną z poli(dimetylosiloksanu) (PDMS) w procesie perwaporacyjnego odsiarczania benzyny pochodzącej z fluidalnego krakingu katalitycznego (FCC). Określono wpływ stężenia organicznych związków siarki na efektywność ich usuwania z organicznych mieszanin tiofen/n-heptan metodą perwaporacji próżniowej.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
  • Silesian University of Technology, Poland Institute of Water and Wastewater Engineering
autor
  • Silesian University of Technology, Poland Institute of Water and Wastewater Engineering
autor
  • Silesian University of Technology, Poland Institute of Water and Wastewater Engineering
  • Institute of Environmental Engineering of the Polish Academy of Sciences, Poland
Bibliografia
  • [1] Brunet, S., Mey, D., Perot, G., Bouchy C. & Diehl, F. (2005). On the hydrodesulphurization of FCC gasoline: a review, Applied Catalysis A: General, 278, pp. 143-172.
  • [2] Chen, J., Li, J., Qi, R., Ye, H. & Chen, C. (2008). Pervaporation performance of crosslinked poly(dimethylsiloxane) membranes for deep desulfurization of FCC gasoline I. Effect of different sulfur species, Journal of Membrane Science, 322, pp. 113-121.
  • [3] Feng, X. & Huang, R.Y.M. (1996). Estimation of activation energy for permeation in pervaporation process, Journal of Membrane Science, 118, pp. 127-131.
  • [4] Hansen, C.M. (1999). Hansen Solubility Paramteres: A User’s Handbook: Chapter 1, CRC Press LLC, Hoersholm, Denmark 1999.
  • [5] Huang, J., Li, J., Zhan, X. & Chen, C. (2008). A modified solution-diffusion model ant its application in the pervaporation separation of alkane/thiophenes mixtures with PDMS membrane, Journal of Applied Polymer Science, 110, pp. 3140-3148.
  • [6] Ito, E. & Veen, R. (2006). On novel processes for removing sulphur from refinery streams, Catalysis Today, 116, pp. 446-460.
  • [7] Kong, Y., Lin, L., Yang, J., Shi, D., Qu, H., Xie, K. & Li, L. (2007). FCC gasoline desulfurization by pervaporation: Effects of gasoline components, Journal of Membrane Science, 293, pp. 36-43.
  • [8] Kong, Y., Lin, L., Zhang, Y., Lu, F., Xie, K., Liu, R., Guo, L., Shao, S., Yang, J. & Shi, D. (2008). Studies on polyethylene glycol/polyethersulfone composite membranes for FCC gasoline desulphurization by pervaporation, European Polymer Journal, 44, pp. 3335-3343.
  • [9] Kong, Y., Lu, F. & Yang, J. (2010). Process for preparing polyacrylonitrile-grafted modified cellulose membranes for gasoline desulfurization, Patent CN 101721924 A, 2010.
  • [10] Kujawski, W. (2009). Pervaporation and vapors separation. Membranes Theory and Practice, Zeszyt III, Toruń 2009.
  • [11] Leflaive, P., Lemberton, J.L., Perot, G., Mirgain, C., Carriat, J.Y. & Colin, J.M. (2002). On the origin of sulfur impurities in fluid catalytic cracking gasoline - reactivity of thiophene derivatives and of their possible precursors under FCC conditions, Applied Catalysis A: General, 227, pp. 201-215.
  • [12] Li, B., Xu, D., Jiang, Z., Zhang, X., Liu, W. & Dong, X. (2008). Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline, Journal of Membrane Science, 322, pp. 293-301.
  • [13] Li, B., Zhao, W., Su, Y., Jiang, Z., Dong, X. & Liu, W. (2009). Enhanced desulfurization performance and swelling resistance of asymmetric hydrophilic pervaporation membrane prepared through surface segregation technique, Journal of Membrane Science, 326, pp. 556-563.
  • [14] Lin, L., Kong, Y., Wang, G., Qu, H., Yang, J. & Shi, D. (2006). Selection and crosslinking modification of membrane material for FCC gasoline desulfurization, Journal of Membrane Science, 285, pp. 144-151.
  • [15] Lin, L., Kong, Y., Xie, K., Lua, F., Liu, R., Guoa, L., Shao, S., Yang, J., Shi, D. & Zhang, Y. (2008). Polyethylene glycol/polyurethane blend membranes for gasoline desulphurization by pervaporation technique, Separation and Purification Technology, 61, pp. 293-300.
  • [16] Lin, L., Kong, Y. & Zhang, Y. (2008). Sorption and transport behaviour of gasoline components in polyethylene glycol membranes, Journal of Membrane Science, 325, pp. 438-445.
  • [17] Lin, L., Wang, G., Qu, H., Yang, J., Wang, Y., Shi, D. & Kong, Y. (2006). Pervaporation performance of crosslinked polyethylene glycol membranes for deep gasoline desulfurization, Journal of Membrane Science, 280, pp. 651-658.
  • [18] Lin, L., Zhang, Y. & Kong, Y. (2009). Recent advances in sulfur removal from gasoline by pervaporation, Fuel, 88, pp. 1799-1809.
  • [19] Lin, L., Zhang, Y. & Li, H.(2010). Pervaporation and sorption behaviour of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species, Journal of Colloid and Interface Science, 350, pp. 355-360.
  • [20] Lu, F., Kong, Y., Lv, H., Ding, J. & Yang, J. (2011). The pervaporation performance of polyimide-block- -polyethylene glycol membranes for gasoline desulfurization: effect of PEG groups, Advanced Material Research, 150, pp. 317-320.
  • [21] Minhas, B.S., Chuba, M.R. & Saxton, R.J. (2004). Membrane process for separation sulfur compounds from FCC light naphtha, Patent US 0026321 A1, 2004.
  • [22] Mortaheb, H.R., Ghaemmaghami, F. & Mokhtarani, B. (2012). A review on removal of sulfur components from gasoline by pervaporation, Chemical Engineering Research and Design, 90, pp. 409-432.
  • [23] Plummer, M.A. & Bonelli, R.F.(2002). Removal of sulfur from a hydrocarbon trough a selective membrane, Patent US 0139713 A1, 2002.
  • [24] Qi, R., Wang, Y., Chen, J., Li, J. & Zhu, S.(2007). Pervaporative desulfurization of model gasoline with Ag2O-filled PDMS membranes, Separation and Purification Technology, 57, pp. 170-175.
  • [25] Qi, R., Wang, Y., Chen, J., Li, J. & Zhu, S. (2007). Removing thiophenes from n-octane using PDMS-AgY zeolite mixed matrix membranes, Journal of Membrane Science, 295, pp. 114-120.
  • [26] Qi, R., Wang, Y., Li, J., Zhao, C. & Zhu, S.(2006). Pervaporation separation of alkane/thiophene mixtures with PDMS membrane, Journal of Membrane Science, 280, pp. 545-552.
  • [27] Qi, R., Wang, Y., Li, J. & Zhu, S. (2006). Sulfur removal from gasoline by pervaporation: The effect of hydrocarbon species, Separation and Purification Technology, 51, pp. 258-264.
  • [28] Qu, H., Kong, Y., Lv, H., Zhang, Y., Yang, J. & Shi, D. (2010). Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyethyl cellulose membranes, Chemical Engineering Journal, 157, pp. 60-66.
  • [29] Saxton, R.J. & Minhas, B.S. (2002). Ionic membranes for organic sulfur separation from liquid hydrocarbons solutions, Patent WO 053682, 2002.
  • [30] Schaetzel, P., Vauclair, C., Luo, G. & Nguyen, Q.T. (2001). The solution-diffusion model Order of magnitude calculation of coupling between the fluxes in pervaporation, Journal of Membrane Science, 191, pp. 103-108.
  • [31] Sha, S., Kong, Y. & Yang, J.(2012). Effect of charge-transfer complex between gasoline components/C60 on desulphurization properties of C60-filled ethyl cellulose hybrid membranes, Journal of Membrane Science, 415-416, pp. 835-841.
  • [32] Sha, S., Kong, Y. & Yang, J. (2012). The pervaporation performance of C60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: effect of operating temperature, Energy&Fuels, 26, pp. 6925−6929.
  • [33] Shao, P. & Huang, R.Y.M. (2007). Polymeric membrane pervaporation, Journal of Membrane Science, 287, pp. 162-179.
  • [34] Smitha, B., Suhanya, D., Sridhar, S. & Ramakrishna, M. (2004). Separation of organic-organic mixtures by pervaporation - a review, Journal of Membrane Science, 241, pp. 1-21.
  • [35] Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today, 86, pp. 211-263.
  • [36] Wang, L., Zhao, Z., Li, J. & Chen, C. (2006). Synthesis and characterization of fluorinated polyimides for pervaporation of n-heptane/thiophene mixtures, European Polymer Journal, 42, pp. 1266-1272.
  • [37] White, L.S. (2006). Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, Journal of Membrane Science, 286, pp. 26-35.
  • [38] White L.S. Wormsbecher R.F. & Lesemann M. (2004). Membrane separation for sulfur reduction, Patent US 0211706 A1, 2004.
  • [39] World-Wide Fuel Charter, Fourth Edition, September 2006.
  • [40] Wu, H., Zhang, X., Xu, D., Li, B. & Jiang, Z. (2009). Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membranes by introducing a bifunctional aminosilane, Journal of Membrane Science, 337, pp. 61-69.
  • [41] Xu, R., Liu, G., Dong, X. & Jin, W. (2010). Pervaporation separation of n-octane/thiophene mixtures using poly(dimethylsiloxane)/ceramic composite membranes, Desalination, 258, pp. 106-111.
  • [42] Yang, Z., Wang, Z., Li, J. & Chen, J. (2012). Polyphosphazene membranes with phenoxyls for enhanced desulfurization, RSC Advances, 2, pp. 11432-11437.
  • [43] Yang, Z., Zhang, W., Li, J. & Chen, J. (2012). Polyphosphazene membrane for desulfurization: Selecting poly[bis(trifluoroethoxy)phosphazene] for pervaporative removal of thiophene, Separation and Purification Technology, 93, pp. 15-24.
  • [44] Zhao, C., Li, J., Qi, R., Chen, J. & Luan, Z. (2008). Pervaporation separation of n-heptane/sulfur species mixtures with poly(dimethylsiloxane) membranes, Separation and Purification Technology, 63, pp. 220-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f21f9207-2e47-4070-8ca7-3d384bb63007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.