Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a honey badger algorithm (HB) based on a modified backward- forward sweep power flow method to determine the optimal placement of droop-controlled dispatchable distributed generations (DDG) corresponding to their sizes in an autonomous microgrid (AMG). The objectives are to minimise active power loss while considering the reduction of reactive power loss and total bus voltage deviation, and the maximisation of the voltage stability index. The proposed HB algorithm has been tested on a modified IEEE 33-bus AMG under four scenarios of the load profile at 40%, 60%, 80%, and 100% of the rated load. The analysis of the results indicates that Scenario 4, where the HB algorithm is used to optimise droop gains, the positioning of DDGs, and their reference voltage magnitudes within a permissible range, is more effective in mitigating transmission line losses than the other scenarios. Specifically, the active and reactive power losses in Scenario 4 with the HB algorithm are only 0.184% and 0.271% of the total investigated load demands, respectively. Compared to the base scenario (rated load), Scenario 4 using the HB algorithm also reduces active and reactive power losses by 41.86% and 31.54%, respectively. Furthermore, the proposed HB algorithm outperforms the differential evolution algorithm when comparing power losses for scenarios at the total investigated load and the rated load. The results obtained demonstrate that the proposed algorithm is effective in reducing power losses for the problem of optimal placement and size of DDGs in the AMG.
Czasopismo
Rocznik
Tom
Strony
871--893
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Faculty of Electrical Engineering, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Pepermans G., Driesen J., Haeseldonckx D., Belmans R., D’haeseleer W., Distributed generation: definition, benefits and issues, Energy policy, vol. 33, no. 6, pp. 787–798 (2005), DOI: 10.1016/j.enpol.2003.10.004.
- [2] Lis R., Sobierajski M., Integration of distributed resources in power systems, Renewable Energy Systems, University of Technology, Wrocław (2011).
- [3] Photovoltaics D.G., Storage E., IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces, IEEE Std, pp. 1547–2018 (2018), DOI: 10.1109/IEEESTD.2018.8332112.
- [4] Dos S.C.L., Mariani V.C., Leite J.V., Solution of Jiles–Atherton vector hysteresis parameters estimation by modified Differential Evolution approaches, Expert Systems with Applications, vol. 39, no. 2, pp. 2021–2025 (2012), DOI: 10.1016/j.eswa.2011.08.035.
- [5] Basu M., Dynamic optimal power flow for isolated microgrid incorporating renewable energy sources, Energy, vol. 264, 126065 (2023), DOI: 10.1016/j.energy.2022.126065.
- [6] Menna Allah El-sayed Mohamed El-Saeed, Abdel-Gwaad A.F., Farahat M.A., Solving the capacitor placement problem in radial distribution networks, Results in Engineering, vol. 17, 100870 (2023), DOI: 10.1016/j.rineng.2022.100870.
- [7] Khoshayand H.A., Wattanapongsakorn N., Mahdavian M., Ganji E., A new method of decision making in multi-objective optimal placement and sizing of distributed generators in the smart grid, Archives of Electrical Engineering, pp. 253–271 (2023), DOI: 10.24425/aee.2023.143701.
- [8] Bora T.C., Mariani V.C., Dos S.C.L., Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm, Applied Thermal Engineering, vol. 146, pp. 688–700 (2019), DOI: 10.1016/j.applthermaleng.2018.10.020.
- [9] Mukhopadhyay B., Das D., Optimal multi-objective expansion planning of a droop-regulated islanded microgrid, Energy, vol. 218, 119415 (2021), DOI: 10.1016/j.energy.2020.119415.
- [10] Roy N.B., Das D., Optimal allocation of active and reactive power of dispatchable distributed generators in a droop controlled islanded microgrid considering renewable generation and load demand uncertainties, Sustainable Energy, Grids and Networks, vol. 27, 100482 (2021), DOI: 10.1016/j.segan.2021.100482.
- [11] Kirthiga M.V., Daniel S.A., Gurunathan S., A methodology for transforming an existing distribution network into a sustainable autonomous micro-grid, IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 31–41 (2013), DOI: 10.1109/TSTE.2012.2196771.
- [12] Uniyal A., Sarangi S., Optimal DG allocation in a microgrid using droop-controlled load flow, in Intelligent Computing Techniques for Smart Energy Systems, Springer, pp. 745–752 (2020), DOI: 10.1007/978-981-15-0214-9_77.
- [13] Shaaban M.F., Saber A., Ammar M.E., Zeineldin H.H., A multi-objective planning approach for optimal DG allocation for droop based microgrids, Electric Power Systems Research, vol. 200, 107474 (2021), DOI: 10.1016/j.epsr.2021.107474.
- [14] Gupta Y., Doolla S., Chatterjee K., Pal B.C., Optimal DG allocation and Volt–Var dispatch for a droop-based microgrid, IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 169–181 (2021), DOI: 10.1109/TSG.2020.3017952.
- [15] Gupta Y., Nellikkath R., Chatterjee K., Doolla S., Volt–Var Optimization and Reconfiguration: Reducing Power Demand and Losses in a Droop-Based Microgrid, IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2769–2781 (2021), DOI: 10.1109/TIA.2021.3057008.
- [16] Moazami G.H., Kazemi M.H., An optimal autonomous microgrid cluster based on distributed generation droop parameter optimization and renewable energy sources using an improved grey wolf optimizer, Engineering Optimization, vol. 50, no. 5, pp. 819–839 (2018), DOI: 10.1080/0305215X.2017.1355970.
- [17] Khalid M., Akram U., Shafiq S., Optimal planning of multiple distributed generating units and storage in active distribution networks, IEEE Access, vol. 6, pp. 55234–55244 (2018), DOI: 10.1109/AC-CESS.2018.2872788.
- [18] Foroutan V.B., Moradi M.H., Abedini M., Optimal operation of autonomous microgrid including wind turbines, Renewable Energy, vol. 99, pp. 315–324 (2016), DOI: 10.1016/j.renene.2016.07.008.
- [19] Yazdavar A.H., Shaaban M.F., El-Saadany E.F., Salama M.M., Zeineldin H.H., Optimal planning of distributed generators and shunt capacitors in isolated microgrids with nonlinear loads, IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2732–2744 (2020), DOI: 10.1109/TSTE.2020.2973086.
- [20] Uniyal A., Sarangi S., Optimal allocation of ELC in microgrid using droop controlled load flow, IET Generation, Transmission & Distribution, vol. 13, no. 20, pp. 4566–4578 (2019), DOI: 10.1049/iet-gtd.2018.5174.
- [21] Kreishan M.Z., Zobaa A.F., Allocation of Dump Load in Islanded Microgrid Using the Mixed-Integer Distributed Ant Colony Optimization, IEEE Systems Journal (2022), DOI: 10.1109/JSYST.2021.3100409.
- [22] Hameed F., Al Hosani M., Zeineldin H.H., A Modified Backward/Forward Sweep Load Flow Method for Islanded Radial Microgrids, IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 910–918 (2019), DOI: 10.1109/TSG.2017.2754551.
- [23] Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W., Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems, Mathematics and Computers in Simulation, vol. 192, pp. 84–110 (2022), DOI: 10.1016/j.matcom.2021.08.013.
- [24] Abdulqadder I.H., Zou D., Aziz I.T., The DAG blockchain: A secure edge assisted honeypot for attack detection and multi-controller based load balancing in SDN 5G, Future Generation Computer Systems, vol. 141, pp. 339–354 (2023), DOI: 10.1016/j.future.2022.11.008.
- [25] Diab A.A.Z., Tolba M.A., El-Rifaie A.M., Denis K.A., Photovoltaic parameter estimation using honey badger algorithm and African vulture optimization algorithm, Energy Reports, vol. 8, pp. 384–393 (2022), DOI: 10.1016/j.egyr.2022.05.168.
- [26] Akbari E., Shafaghatian N., Zishan F., Montoya O.D., Giral-Ramírez D.A., Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations, IEEE Access, vol. 10, pp. 95824–95838 (2022), DOI: 10.1109/ACCESS.2022.3203730.
- [27] Janjanam L., Saha S.K., Kar R., Mandal D., Hammerstein-Wiener nonlinear system identification by using honey badger algorithm hybridized Sage-Husa adaptive Kalman filter with real-time applications, AEU-International Journal of Electronics and Communications, vol. 151, 154218 (2022), DOI: 10.1016/j.aeue.2022.154218.
- [28] Moradi M.H., Abedini M., A novel method for optimal DG units capacity and location in Microgrids, International Journal of Electrical Power & Energy Systems, vol. 75, pp. 236–244 (2016), DOI: 10.1016/j.ijepes.2015.09.013.
- [29] Chakravorty M., Das D., Voltage stability analysis of radial distribution networks, International Journal of Electrical Power & Energy Systems, vol. 23, no. 2, pp. 129–135 (2001), DOI: 10.1016/S0142-0615(00)00040-5.
- [30] Vasquez J.C., Guerrero J.M., Savaghebi M., Eloy-Garcia J., Teodorescu R., Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters, IEEE Transactions on industrial electronics, vol. 60, no. 4, pp. 1271–1280 (2013), DOI: 10.1109/TIE.2012.2194951.
- [31] Price K.V., Differential evolution: a fast and simple numerical optimizer, in Proceedings of North American fuzzy information processing, pp. 524–527 (1996), DOI: 10.1109/NAFIPS.1996.534790.
- [32] Kundur P.S., Power System Stability and Control, 1st edition, New York, McGraw Hill (1994).
- [33] Lopes J.P., Moreira C.L., Madureira A.G., Defining control strategies for microgrids islanded operation, IEEE Transactions on power systems, vol. 21, no. 2, pp. 916–924 (2006), DOI: 10.1109/TP-WRS.2006.873018.
- [34] Al-Kaabi M., Al Hasheme J., Al-Bahrani L., Improved Differential Evolution Algorithm to solve multiobjective of optimal power flow problem, Archives of Electrical Engineering, vol. 71, no. 3 (2022), DOI: 10.24425/aee.2022.141676.
- [35] Teng J.H., A direct approach for distribution system load flow solutions, IEEE Transactions on power delivery, vol. 18, no. 3, pp. 882–887 (2003), DOI: 10.1109/TPWRD.2003.813818.
- [36] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Transactions on Power delivery, vol. 4, no. 2, pp. 1401–1407 (1989), DOI: 10.1109/61.25627.
- [37] Sivakumar K., Jayashree R., Danasagaran K., Efficiency-driven planning for sizing of distributed generators and optimal construction of a cluster of microgrids, Engineering Science and Technology, an International Journal (2021), DOI: 10.1016/j.jestch.2021.02.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f21d7fb1-bbbc-4ccc-ae3c-f118a384b376