Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
MIKE SHE software was used to estimate recharge into the aquifers of Ogun and Oshun Basins. Abeokuta within the Ogun Basin and Oshogbo in the Oshun Basin are sub-divided vertically into two components: atmosphere, and unsaturated zone. The atmosphere zone comprises of rainfall and potential evapotranspiration, while the unsaturated zones, comprises of the Basement Complex and Sedimentary rock. Daily records from two rainfall stations, Oshogbo station (2008–2011) and Abeokuta station (2010–2014) water years were obtained for simulation of groundwater recharge processes using MIKE SHE model. The simulation results showed that daily groundwater recharge is influenced by rainfall and ranges from 0 mm∙day–1 in January when there was an insufficient rainfall in the two stations to 10.89 mm∙day–1 in Abeokuta and 29.85 mm∙day–1 in Oshogbo in the month of August when the soils had attained field capacity. The study found out that there are more daily groundwater recharge in Oshun basin compared to that of Ogun basin. This was alluded to more rain-fall and less evapotranspiration recorded at Oshun basin as compared to Ogun basin coupled with the sedimentary soil which allows more movement of water into the aquifer of the basin. It is recommended MIKE SHE model should be used to estimate recharge in other basins in Nigeria and Africa for quick and effective daily recharge calculations to permit better and scientific decision making in these areas.
Wydawca
Czasopismo
Rocznik
Tom
Strony
86--93
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- National Institute for Policy and Strategic Studies, Kuru, Nigeria
Bibliografia
- ADEFOLALU D.O. 1998. Rainfall trends in Nigeria. Theoretical and Applied Climatology. Vol. 37. Iss. 1 p. 205–219. DOI 10.1007/BF00867578.
- CANADELL J., JACKSON R.B., EHLERINGER J.R., MOONEY H.A., SALA O.E., SCHULZE E.D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia. Vol. 108 p. 583–595. DOI 10.1007/BF00329030.
- COMBALICER E.A., LEE S.H., AHN S., KIM D.Y., IM S. 2008. Comparing groundwater recharge and baseflow in the Buk-moongol small-forested watershed, Korea. Journal of Earth System Sciences. Vol. 117. Iss. 5 p. 553–566. DOI 10.1007/s12040-008-0052-8.
- DHI 2017. MIKE SHE Reference manual and reference guide for water movement. Denmark Hydrology Institute. Vol. 2 pp. 372.
- DE VRIES J.J., SIMMERS I. 2002. Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal. Vol. 10 p. 5–17. DOI 10.1007/s10040-001-0171-7.
- FAO 2009. Harmonized world soil database (version 1.1). Rome, Italy, Laxenburg, Austria. Food and Agriculture Organisation and IIASA pp. 38.
- IDOWU O.A., MARTINS O. 2007. Hydrograph analysis for groundwater recharge in the phreatic basement aquifer of The Opeki River basin, southwestern Nigeria. Asset Series B. Vol. 6. Iss. 2 p. 132–140.
- LAVKULICH L.M., AROCENA J.M. 2011. Luvisolic soils of Canada: Genesis, distribution, and classification. Canadian Journal of Soil Science. Vol. 91. Iss. 5 p. 781–806. DOI 10.4141/cjss 2011-014.
- LERNER D.N., ISSAR A.S., SIMMERS I. 1990. Groundwater recharge: A guide to understanding and estimating natural recharge. International Contributions to Hydrogeology. Hannover. Verlag Heinz Heise, Germany. ISBN 3-922705-91-X pp. 345.
- LEWIS F.M., WALKER G.R. 2002. Assessing the potential for sig-nificant and episodic recharge in southwestern Australia us-ing rainfall data. Hydrogeology Journal. Vol. 10 p. 229–237. DOI 10.1007/s10040-001-0172-6.
- LUBCZYNSKI M.W., GURWIN J. 2005. Integration of various data sources for transient groundwater modelling with spatio-temporally variable fluxes – Sardon study case, Spain. Journal of Hydrology. Vol. 20 p. 1–26. DOI 10.1016/j.jhydrol. 2004.08.038.
- MONDAL N.C., SINGH V.S. 2009. Mass transport modeling of an industrial belt using visual MODFLOW and MODPATH: A case study. Journal of Geography and Regional Planning. Vol. 2. Iss. 1 p. 001–019.
- OGUNKOYA O.O. 2000. Water balance of a small catchment with permeable soils in Ile Ife area, Southwestern Nigeria. Journal of Mining and Geology. Vol. 36. Iss. 1 p. 105–111.
- OKE M.O., MARTINS O., IDOWU O.A., AIYELOKUN O. 2015. Comparative analysis of groundwater recharge estimation value obtained using empirical methods in Ogun and Oshun River Basins. Ife Journal of Sciences. Vol. 17. Iss. 1 p. 53–63.
- OKE M.O.,MARTINS O., SALAKO F.K., IDOWU O.A. 2016. Estimation of groundwater recharge in the lower Ogun River Basin using two independent methods. Nigeria Journal of Hydrological Sciences. Vol. 4 p. 181–200.
- OORBDA 1982a. Ogun River basin, master plan for the iss of water resources, draft final report. Tahal Consultants (Nigeria) Ltd. in Association with Associated Engineers and Consultants (Nigeria) Ltd. Vol. I and II.
- OORBDA 1982b. Oshun River basin, master plan for the development of water resources, draft final report. Tahal Consultants (Nigeria) Ltd. in Association with Associated Engineers and Consultants (Nigeria) Ltd. Vol. III and IV.
- REESE S.O., RISSER D.W. 2010. Summary of groundwater recharge estimates for Pennsylvania. Water Resource Report. No. 70. Harrisburg. Pennsylvania Geological Survey pp. 109.
- SCANLON B.R., COOK P.G. 2002. Theme issue on groundwater recharge. Hydrogeology Journal. Vol. 10 p. 3–4. DOI 10.1007/s10040-001-0175-3.
- SHAMUYARIRA K.K. 2017. Determination of recharge and groundwater potential zones in Mhinga Area, South Africa [online]. MSc Thesis. Venda. University of Venda. [Access 13.11.2019]. Available at: https://pdfs.semanticscholar.org/ 3098/5bc2f105ffaa8012a11d98f33edb51631eed.pdf
- SHARP J.M. Jr. 2010. The impacts of urbanization on groundwater systems and recharge [online]. AQUAmundi – Am01008 p. 51–56. [Access 24.07.2018]. Available at: http://www. acquesotterranee.it/sites/default/files/Am01008.pdf
- SMERDON B.D., ALLEN D.M., GRASBY S.E., BERG M.A. 2009. An approach for predicting groundwater recharge in mountainous watersheds. Journal of Hydrology. Vol. 365 p. 156–172. DOI 10.1016/j.jhydrol.2008.11.023.
- USDA-ARS 2014. Soil and water assessment tool [online]. Unit-ed States Department of Agriculture – Agricultural Research Service. [Access 10.07.2015]. Available at: https://swat.tamu. edu/software/swat-executables/
- VAN GENUCHTEN M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sciences Society Journal. Vol. 44 p. 892–898. DOI 10.2136/sssaj 1980.03615995004400050002x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f21d2b9d-8e99-4387-b61d-6c9b728ad468