PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solving the Generalized Poisson Equation in Proper and Directed Interval Arithmetic

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper some interval methods for solving the generalized Poisson equation (GPE) are presented. The main aim of this work is focused on providing such algorithms for solving this type of equation that are able to store information about potentially made numerical errors inside the results. In order to cope with these assumptions the floating-point interval arithmetic is used. We proposed to use interval versions of the central-difference method for two types of interval arithmetic: proper and directed. In the experimental part of this paper both arithmetics for three examples of GPE are compared
Twórcy
autor
  • Poznan Supercomputing and Networking Center Jana Pawla II 10, 61-139 Poznań, Poland
autor
  • Institute of Computing Science, Poznan University of Technology Piotrowo 2, 60-965 Poznań, Poland
  • Department of Computer Science, Higher Vocational State School in Kalisz, Poznanska 201-205, 62-800 Kalisz, Poland
Bibliografia
  • [1] Yu. I. Shokin, Interval Analysis, Nauka, Novosibirsk, 1981.
  • [2] A. Marciniak, B. Szyszka, One-and Two-Stage Implicit Interval Methods of Runge-Kutta Type, CMST 5, 53-65 (1999).
  • [3] K. Gajda, A. Marciniak, B. Szyszka, Three-and Four-Stage Implicit Interval Methods of Runge-Kutta Type, CMST 6, 41-59 (2000).
  • [4] A. Marciniak, Finding the Integration Interval for Interval Methods of Runge-Kutta Type in Floating-Point Interval Arithmetic, Pro Dialog, 10, 35-45 (2000).
  • [5] A. Marciniak, B. Szyszka, On Representation of Coefficients in Implicit Interval Methods of Runge-Kutta Type, CMST 10(1), 57-71 (2004).
  • [6] A. Marciniak, Implicit Interval Methods For Solving the Initial Value Problem, Numerical Algorithms 37(1-4), 241-251(2004).
  • [7] A. Marciniak, Symplectic Interval Methods for Solving Hamiltonian Problems, Pro Dialog 22, 27-37 (2007).
  • [8] M. Jankowska, A. Marciniak, Implicit Interval Multistep Methods For Solving the Initial Value Problem, CMST 8(1), 17-30 (2002).
  • [9] M. Jankowska, A. Marciniak, On Explicit Interval Methods of Adams-Bashforth Type, CMST 8(2), 46-57 (2002).
  • [10] M. Jankowska, A. Marciniak, On Two Families Of Implicit Interval Methods Of Adams-Moulton Type, CMST 12(2), 109-113 (2006).
  • [11] A. Marciniak, Multistep Interval Methods Of Nyström and Milne-Simpson Types, CMST13(1), 23-40 (2007).
  • [12] A, Marciniak, On Multistep Interval Methods For Solving the Initial Value Problem, Journal of Computational and Applied Mathematics199(2) 229-237 (2007).
  • [13] K. Gajda, M. Jankowska, A. Marciniak, B. Szyszka, A Survey Of Interval Runge-Kutta and Multistep Methods For Solving the Initial Value Problem, in: Parallel Processing and AppliedMathematics, pages 1361-1371 Springer, 2008.
  • [14] A. Marciniak, Selected Interval Methods for Solving the Initial Value Problem, Publishing House of Poznan University ´of Technology, 2009.
  • [15] R.E. Moore, The Automatic Analysis And Control Of Error In Digital Computation Based On the Use Of Interval Numbers, Error in Digital Computation 1, 61-130 (1965).
  • [16] R.E. Moore, Interval Analysis, volume 4, Prentice-Hall Englewood Cliffs, 1966.
  • [17] F. Krückeberg, Ordinary Differential Equations, Topics in Interval Analysis, pages 91-97, (1969).
  • [18] N.S. Nedialkov, Interval Tools for ODEs and DAEs, In Scientific Computing, Computer Arithmetic and Validated Numerics, 2006. SCAN 2006, page 4, IEEE, 2006.
  • [19] T. Kimura M.T. Nakao, T. Kinoshita, A Priori Error Estimates for a Full Discrete Approximation of the Heat Equation, SIAM Journal on Numerical Analysis51(3), 1525–1541, (2013).
  • [20] M.T. Nakao, On Verified Computations Of Solutions for Nonlinear Parabolic Problems, Nonlinear Theory and Its Applications, IEICE 5(3), 320-338 (2014).
  • [21] T. Kinoshita, T. Kimura, and M.T. Nakao, On the A Posteriori Estimates For Inverse Operators Of Linear Parabolic Equations With Applications to the Numerical Enclosure Of Solutions For Nonlinear Problems, Numerische Mathematik 126(4), 679-701 (2014).
  • [22] A. Marciniak, An Interval Difference Method For Solving the Poisson Equation The First Approach, Pro Dialog 24, 49-61 (2008).
  • [23] A. Marciniak, An Interval Version of the Crank-Nicolson Method-The First Approach, In Applied Parallel and Scientific Computing, pages 120-126 Springer, 2012.
  • [24] B. Szyszka, The Central Difference Interval Method for Solving the Wave Equation, In Parallel Processing and Applied Mathematics, volume 7204 of Lecture Notes in Computer Science, pages 523-532 Springer Berlin Heidelberg, 2012.
  • [25] A. Marciniak, B. Szyszka, A Central-Backward Difference Interval Method for Solving the Wave Equation, In Applied Parallel and Scientific Computing, pages 518-527 Springer, 2013.
  • [26] T. Hoffmann, A. Marciniak, B. Szyszka, Interval Versions of Central-Difference Method for Solving the Poisson Equation in Proper and Directed Interval Arithmetic, Foundations of Computing and Decision Sciences 38(3), 193-206 (2013).
  • [27] T. Hoffmann and A. Marciniak, Solving the Poisson Equation by an Interval Difference Method of the Second Order, CMST19(1), 13-21 (2013).
  • [28] Richard L Burden and J Douglas Faires, Numerical Analysis, Brooks/Cole, 2001.
  • [29] David Ronald Kincaid and Elliott Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, volume 2, American Mathematical Soc., 2002.
  • [30] R. Baker Kearfott, Interval Computations: Introduction, Uses, and Resources, Euromath Bulletin 2(1), 95-112 (1996).
  • [31] R.E Moore, R. Baker Kearfott, and M.J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
  • [32] J.R. Nagel, Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM), Lecture Notes, Dept. of Electrical and Computer Engineering, University of Utah, (2011).
  • [33] H. Schwandt, The Solution of Nonlinear Elliptic Dirichlet Problems on Rectangles by Almost Globally Convergent Interval Methods, SIAM Journal on Scientific and StatisticalComputing 6(3), 617-638 (1985).
  • [34] H. Schwandt, Almost Globally Convergent Interval Methods for Discretizations of Nonlinear Elliptic Partial DifferentialEquations, SIAM Journal on Numerical Analysis 23(2), 304-324 (1986).
  • [35] S. Markov, On Directed Interval Arithmetic and Its Applications,in: The Journal of Universal Computer Science, pages 514-526 Springer, 1996.
  • [36] E.D. Popova, Extended Interval Arithmetic in IEEE FloatingPoint Environment, Interval Comput. 4, 100-129 (1994).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f219f706-9bb3-44db-b240-f790209f4f72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.