PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Ultrasonic Mammography with Circular Transducer Array

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic projection imaging is similar to X-ray radiography. Nowadays, ultrasonic projection methods have been developed in the set-up of multi-element flat arrays with miniature transducers, where one of the array acts as a transmitter and the other one is a receiver. In the paper, a new method of the projection imaging using a 1024-element circular ultrasonic trans- ducer array is presented. It allows the choice of a projection scanning plane for any angle around a studied object submerged in water. Fast acquisition of measurement data is achieved as a result of parallel switch- ing of opposite transmitting and receiving transducers in the circular array and vertical movement of the array. The algorithm equalizing the length of measurement rays and the distances between them was elaborated for the reconstruction of projection images. Projection research results of breast phantom obtained by means of the elaborated measurement set- up and compared with mammography simulations (acquired through overlapping of X-ray tomographic images) show that ultrasonic projection method presented in this paper (so-called ultrasonic mammogra- phy) can be applied to the woman’s breast and be used as a diagnosis for an early detection of cancerous lesions. It can, most of all, be used as an alternative or complementary method to standard mammog- raphy, which is harmful because of ionizing radiation and invasive due to the mechanical compression of tissue.
Rocznik
Strony
559--568
Opis fizyczny
Bibliogr. 32 poz., rys., schem.
Twórcy
  • Chair of Acoustics and Multimedia, Department of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Chair of Acoustics and Multimedia, Department of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Chair of Acoustics and Multimedia, Department of Electronics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. BRETTEL H., ROEDER U., SCHERG C. (1981), Ultrasonic transmission camera for medical diagnosis, Biomedizinische Technik, 26, p.63.
  • 2. CHlAO R.Y., THOMAS L.J. (1996), Aperture formation on reduced-channel arrays using the transmit receive apodization matrix, 1996 IEEE Ultrasonics Symposium Proceedings, 1567-1571.
  • 3. DRINKWATER B.W., WILCOX P.D. (2006), Ultrasonic arrays for non-destructive evaluation: A Review, NDT&E International, 39, 525-541.
  • 4. DUCK F.A. (1990), Physical Properties of Tissue - A Comprehensive Reference Book, Academic Press, London, Chap. 4, 73-135.
  • 5. DURIC N., LITTRUP P., POULO L., BABKIN A., PEVZNER R., HOLSAPPLE E., RAMA O., GLIDE C. (2007), Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype, Medical Physics, 34, 2, 773-785.
  • 6. EAMES M.D.C., HOSSACK J.A. (2008), Fabrication and, evaluation of fully-sampled, two dimensional transducer array for “Sonic Window” imaging system, Ultrasonics, 48, 376-383.
  • 7. ERMERT H., KEITMANN O., OPPELT R., GRANZ B., PESAVENTO A., VESTER M., TILLIG B., SANDER V. (2000), A New Concept For A Real-Time Ultrasound Transmission Camera, IEEE Ultrasonics Symposium Proceedings, San Juan, 1611-1614.
  • 8. GRANZ B., OPPELT R. (1987), A Two Dimensional PVDF Transducer Matrix as a Receiver in an Ultrasonic Transmission Camera, Acoustical Imaging, 15, Plenum Press, New York, 213-225.
  • 9. GREEN P.S., SCHAEFER L.F., JONES E.D., SUAREZ J.R. (1974), A New High Performance Ultrasonic Camera, Acoustical Holography, 5, Plenum Press, New York, 493-503.
  • 10. GUDRA T., OPIELIŃSKI K.J. (2006), The ultrasonic probe for the investigating of internal object structure by ultrasound transmission tomography, Ultrasonics, 44, e679-e683.
  • 11. HOCTOR R.T., KASSAM S.A. (1990), The Unifying Role of the Coarray in Aperture Synthesis for Coherent and, Incoherent Imaging, Proceedings of the IEEE, 78, 735-752.
  • 12. JOHNSON J.A., KARAMAN M., KHURI-YAKUB B.T. (2005), Coherent-Array Imaging Using Phased Subarrays. Part I: Basic Principles, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 37-50.
  • 13. KAK A.C., SLANEY M. (1988), Principles of Computerized Tomographic Imaging, IEEE Press, New York, Chap. 3, 49-111.
  • 14. KARAMAN M., WAGANT I.O., ORALKAN Ó., KHURI- YAKUB B.T. (2009), Minimally Redundant 2-D Array Design for 3-D Medical Ultrasound Imaging, IEEE Transactions on Medical Imaging, 28, 7, 1051-1061.
  • 15. KIM J-J., SONG T-K. (2006), Real-Time High-Resolution 3D Imaging Method Using 2D Phased Arrays Based on Sparse Synthetic Focusing Technique, 2006 IEEE Ultrasonics Symposium Proceedings, 1995-1998.
  • 16. LANDINI L., SARNELLI R., SQUARTINI F. (1985), Frequency-Dependent Attenuation in Brest Tissue Characterization, Ultrasound in Medicine and, Biology, 4, 599-603.
  • 17. OPIELIŃSKI K.J. (2011), Application of transmission waves for characterization and, imaging of biological media structures [in Polish], Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 18. OPIELIŃSKI K.J. (2012), Ultrasonic Projection, Chap. 1 in Ultrasonic Waves, A. Dos Santos Junior [Ed.], In- Tech, Rijeka, 29-58.
  • 19. OPIELIŃSKI K.J., GUDRA T. (2004), Three-dimensional reconstruction of biological objects’ internal structure heterogeneity from the set of ultrasonic tomograms, Ultrasonics, 42, 1-9, 705-711.
  • 20. OPIELIŃSKI K.J., GUDRA T. (2005), Computer Recognition of Biological Objects’ Internal Structure Using Ultrasonic Projection, [in:] Computer Recognition Systems, M. Kurzyński, E. Puchała, M. Woźniak, Żołnierek [Eds.], Springer-Verlag, Berlin, 645-652.
  • 21. OPIELIŃSKI K.J., GUDRA T. (2010), Multielement ultrasonic probes for projection imaging of biological media, Physics Procedia, 3, 1, 635-642.
  • 22. OPIELIŃSKI K.J., GUDRA T. (2013), Ultrasonic projection imaging of biological media, Proc. of Meetings on Acoustics, 19, Acoustical Society of America, 075008.
  • 23. OPIELIŃSKI K.J., GUDRA T., PRUCHNICKI P. (2010a), A Digitally Controlled Model of an Active Ultrasonic Transducer Matrix for Projection Imaging of Biological Media, Archives of Acoustics, 35, 1, 75-90.
  • 24. OPIELIŃSKI K.J., GUDRA T., PRUCHNICKI P. (2010b), Narrow Beam Ultrasonic Transducer Matrix Model for Projection Imaging of Biological Media, Archives of Acoustics, 35, 1, 91-109.
  • 25. OPIELIŃSKI K.J., GUDRA T., PRUCHNICKI P., PODGÓRSKI P., KRAŚNICKI T., KURCZ J., SĄSIADEK M. (2013), Ultrasound Transmission Tomography Imaging of Structure of Breast Elastography Phantom, Compared to US, CT and, MRI, Archives of Acoustics, 38, 3, 321-334.
  • 26. OPIELIŃSKI K.J., PRUCHNICKI P., GUDRA T. (2011), 2-D Directional Ultrasonic Passive Matrix of 512 Elementary Transducers for Projection Imaging of Biological Media, [in:] International Congress on Ultrasonics Gdańsk 2011 - AIP Conference Proceedings, B.J. Linde, J. Pączkowski, N. Ponikwicki [Eds.], American Institute of Physics, New York, 1433, 199- 202.
  • 27. REGUIEG D., PADILLA F., DEFONTAINE M., PATAT F., LAUGIER P. (2006), Ultrasonic Transmission Device Based on Crossed Beam Forming, IEEE Ultrasonics Symposium Proceedings, Vancouver, 2108-2111.
  • 28. WANG A.S., PELC N.J. (2011), Synthetic CT: Simulating low dose single and, dual energy protocols from a dual energy scan, Medical Physics, 38, 10, 5551-5562.
  • 29. WILDES D.G., CHIAO R.Y., DAFT CH.M.W., RIGBY K.W., SMITH L.S., THOMENIUS K.E. (1997), Elevation performance of 1.25D and, 1.5D Transducer Arrays, IEEE Transactions on Ultrasonics, Ferro- electrics, and Frequency Control, 44, 5, 1027-1037.
  • 30. WÓJCIK J. (2004), Nonlinear reflection and, transmission of plane acoustic waves, Archives of Acoustics, 29, 4, 607-632.
  • 31. WYGANT I.O., LEE H., NIKOZADEH A., YEH D.T., ORALKAN Ö., KARAMAN M., KHURI-YAKUB B.T. (2005), An Integrated Circuit with Transmit Beam- forming and, Parallel Receive Channels for Real-Time Three-Dimensional Ultrasound Im,aging, 2006 IEEE Ultrasonics Symposium Proceedings, 2186-2189.
  • 32. YANG J.N., MURPHY A.D., MADSEN E.L., ZAGZEBSKI J.A., GILCHRIST K.W., FRANK G.R., MCDONALD M.C., MILLARD C.A., FARAGGI A., JARAMILLO C.A., GOSSET F.R. (1991), A Method, for in, Vitro Mapping of Ultrasonic Speed and, Density in Breast Tissue, Ultrasonic Imaging, 13, 91-109.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2198b8a-37cf-4e84-ad51-bcb8806ed62d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.