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Two coupled time-dependent two dimensional nonlinear Schrödinger
equations have been derived using multiscale expansion for two nonlinearly inter-
acting capillary-gravity waves over an infinite depth of water. These equations are
then utilised to discuss the modulational (Benjamin-Feir) instability of two Stokes
wavetrains due to unidirectional and bidirectional perturbations. It is found from the
graphs and the three-dimensional contour plots that the rate of growth of instability
for two wave packets interacting obliquely is higher than the instance of modula-
tion of one wave packet. We have likewise examined the influence of capillarity on
modulational instability.
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1. Introduction

In the analysis of nonlinear evolution of slowly modulated water
waves, nonlinear Schrödinger equations are frequently used as they can properly
reflect the Benjamin-Feir instability (modulational instability). For deep water
waves, Benjamin and Feir [1–3] have described the experimental results of mod-
ulational instability. They have showed that when deep water wavetrains are
formed at one end of a long tank the waves began to develop irregularities in
wavenumber and amplitude. At last, at a large distance from the wavemaker,
the wavetrains have disintegrated fully and have appeared to become random in
nature.

A physical elucidation for the onset of modulational instability can be com-
prehended by studying the behavior of a weakly nonlinear deep water wavetrain
which contains waves of uniform wavelengths initially. If the wave envelope has
a sinusoidal nature, then the waves at the crests of the envelope will propagate
forward more rapidly than the waves at the troughs of the envelope and this
occurs owing to the nonlinearity of the wave motion. Accordingly, wave numbers
will enhance before the envelope crests and diminish after the envelope crests.
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Now, dispersive effects cause energy to come towards the crests of the enve-
lope, causing the amplitude at the crests to enhance. This in turn expedites the
instability.

The evolution problem of two surface wave packets for counter-propagating
or co-propagating or obliquely propagating waves has been studied by different
authors [4–7] in several contexts. Stability analysis for surface-gravity wave in
an infinite depth of water in the presence of a second wave has been discussed
by Roskes [8] using a system of cubic nonlinear Schrödinger equations. In par-
ticular, cases of instability and multiphase solitary envelop waves are taken into
account. Later on, Dhar and Das [9] have made the same analysis as per-
formed by Roskes [8] based on fourth order nonlinear evolution equation and
they have derived two coupled fourth order nonlinear evolution equations for
two Stokes wavetrains in an infinite depth of water. Onorato et al. [10] have
described the stability analysis of two wave packets propagating in the same
direction in shallow water. Starting from Zakharov’s integral equation, two cou-
pled fourth order nonlinear evolution equations have also been derived by Deb-
sarma and Das [11] for two co-propagating capillary-gravity wave packets and
they have observed that the presence of a uniform capillary-gravity wavetrain
makes an enhancement in the growth rate of instability of a surface gravity
wavetrain.

Recently, there has been great enthusiasm for studying an important subject
related to the dynamics of a pair of obliquely interacting wave systems. Ono-
rato et al. [4] have argued first about the main cause that the growth rate
of instability for two obliquely interacting wave systems is higher than that for
a single wavetrain.

Laine-Pearson [5] has argued that instability due to modulation can be
considered as a possible mechanism for the generation of large amplitude freak
waves in a situation of crossing sea states. After investigating weakly nonlinear
interaction of two wave systems spreading along with two separate directions in
deep water, he also inferred that the rate of growth of long-wave instability of
two waves interacting obliquely is more significant than those due to resonant
interaction of short-crested waves. Now, such freak waves may be formed due to
both nonlinear effect and statistical, linear effect in which geometrical and spatio-
temporal focusing is considered and may exist both in shallow and deep water [6].
Kharif and Pelinovsky [12] have presented a simple statistical analysis of the
freak wave probability based on the assumption of a Gaussian wave field with
random perturbations. It has been observed that the random perturbations can
grow to produce inherently nonlinear water wave systems, generally known as
freak waves, through the nonlinear interaction between two coupled water waves.

Starting from Zakharov’s integral equation, Onorato et al. [4] have de-
veloped two coupled nonlinear Schrödinger equations for two nonlinearly inter-
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acting waves in deep water with two separate channels of spread. From these
equations, they have found the instability growth rate for one dimensional two
wave systems and observed that the growth rates rely on not just the wavelength
of perturbation and steepness of the primary waves but also on the angle be-
tween the two wave systems. This outcome has then been extended by Shukla
et al. [6] for investigating the rate of growth of instability for bidirectional per-
turbations employing two coupled nonlinear Schrödinger equations as derived by
Onorato et al. [4].

Again, Onorato et al. [13] have performed experiments in two-wave basins
of different dimensions and stated that the possibility of the generation of freak
waves strongly relies upon the directional properties of the waves. Further, Sena-
pati et al. [14] have determined two coupled nonlinear evolution equations in
the case of crossing sea states in the presence of a uniform wind flow in deep
water.

All these analyses made by the aforesaid authors are for gravity waves. In
the present paper, we have made a stability analysis of capillary-gravity waves
in a situation of crossing sea states over an infinite depth of water, starting from
two coupled nonlinear Schrödinger equations. Therefore this paper is an exten-
sion of the work made by Shukla et al. [6] to incorporate capillarity, which is
effective for small waves. Using a multiple scale method, we have obtained nonlin-
ear Schrödinger equations to study slowly modulated waves, whereas Onorato
et al. [4] and Shukla et al. [6] have derived the nonlinear Schrödinger equa-
tions from Zakharov’s integral equation. Here two capillary-gravity wavetrains
are propagating obliquely and making equal angles with the direction which is
taken as the x-axis. The present paper is sorted out as follows: Section 2 com-
prises of basic equations and supposition. The two coupled nonlinear Schrödinger

Fig. 1. Schematic diagram of the obliquely interacting two wavetrains on the xy plane.
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equations are then derived in Section 3. Section 4 consists of stability of a uni-
form wavetrain. Finally, a discussion along with the conclusion is exhibited in
Section 5.

2. Basic equations and assumption

We consider a Cartesian system of coordinates oxyz, where oxy represents the
uninterrupted free surface of the water and z axis is taken vertically upwards.
We assume that two wavetrains progress on the xy plane having basic wave
numbers k1 = (k, l) and k2 = (k,−l), respectively. We take, in the perturbed
state, z = η(x, y, t) as the equation of the undulating free surface at time t. The
perturbed velocity potential φ for irrotational and inviscid motion satisfies the
following three dimensional Laplace equations,

(2.1) ∇2φ = 0, −∞ < z < η.

The kinematic condition is given by

(2.2)
∂φ

∂z
− ∂η

∂t
=
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
on z = η.

At the free surface, the dynamic boundary condition can be expressed as

(2.3)
∂φ

∂t
+ gη

= −1

2
(∇φ)2 + s

[
ηxx(1 + η2

y) + ηyy(1 + η2
x)− 2ηxyηxηy

(1 + η2
x + η2

y)
3
2

]
on z = η.

Also φ should satisfy the following condition

(2.4) φ→ 0 as z → −∞,

where the parameter s is the surface tension coefficient T divided by the density
ρ of the bulk fluid and g is the gravitational acceleration.

It is assumed that the disturbance being a progressive wave, we consider the
solutions of the above equations as follows

(2.5) P = P00 +
∞∑
m=0

∞∑
n=0

[Pmn exp{i(mψ1 + nψ2)}

+ P ∗mn exp{−i(mψ1 + nψ2)}], (m,n) 6= (0, 0),

where ψ1 = kx + ly − ωt and ψ2 = kx − ly − ωt represent the phase functions
of the first and second wavetrains, respectively and P symbolizes for φ and η;
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φ00, φmn, φ∗mn are functions of the slow modulation variables x1 = δx, y1 = δy,
t1 = δt and z; η00, ηmn, η∗mn are functions of x1, y1, t1. Here ’∗’ indicates
complex conjugate and δ is a slowness parameter which measures the weakness
of nonlinearity.

In the present paper, we are dealing with two Stokes wavetrains whose ampli-
tudes are finite and small, so we have introduced the slow modulation variables
x1, y1, t1 and we have obtained here analytical results for small wavenumbers
of perturbations and small wave steepness.

The nonlinear spatio-temporal evolution of slowly modulated water-surface
waves can be described by the nonlinear Schrödinger equation when the wave
steepness is small (� 1) and the bandwidth is sufficiently narrow (� 1). Typi-
cally, one assumes that the bandwidth and the wave steepness are of the same
order of magnitude O(δ), for which the leading dispersive and nonlinear effects
balance at the third order O(δ3). However, when dispersive and nonlinear effects
are in balance, the solitary envelope waves, also called envelope solitons, may
exist and multiphase solitary envelope wave solutions have been found under
two conditions [8]. Now, the instabilities and solitary wave solutions for these
conditions may be ascribed as self-modulation and self-focusing effects. Thus,
δ represents both the slow modulations and the wave steepness (wave ampli-
tude). Again, the derivation of cubic Schrödinger equations (3.13) and (3.14)
requires that δ be a small parameter and describes a balance between nonlinear-
ity and wave dispersion.

We now discuss the physical justification and mathematical explanation re-
garding the fundamental assumption that the modes (2, 0), (0, 2), (1, 1), (1,−1)
have weaker amplitudes than the modes (1, 0), (0, 1). In the expression for η,
given by (2.5), the first term η00 is a real function, slowly varying in space
and time and it represents the surface elevation brought about by the radi-
ation stress of the waves. Again, η10 and η01 represent the leading first or-
der amplitudes of order O(δ), where δ � 1. Accordingly, η10 exp (iψ1) and
η01 exp (iψ2) are known as primary or carrier wavetrains. Further, the ampli-
tudes ηmn [(m,n) = (2, 0), (0, 2), (1, 1), (1,−1)] appear either due to the self-
interaction of any one of the two wavetrains or due to the interaction of any
one of the two wavetrains with the other one and are of order O(δ2), as ηmn
are the product of two leading first order amplitudes. Proceeding in this way
we obtain third order amplitudes ηmn [(m,n) = (3, 0), (0, 3), . . .] and thus we
get a convergent infinite series containing successively the weaker order of am-
plitudes. In other words, we may state that the primary waves having finite
but small amplitudes produce higher harmonics either through nonlinear self-
interaction or through nonlinear wave-wave interaction. As a result, the gener-
ated higher harmonics will be of amplitudes smaller than that of the primary
harmonics.
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As amn, bmn for (m,n) = (2, 0), (0, 2), (1, 1), (1,−1) are of order O(δ2), it
follows from Eqs. (3.6) (or (3.7)) that ηmn are of order O(δ2) for the said values
of (m,n). Solving ηmn, for (m,n) = (2, 0), (0, 2), (1, 1), (1,−1) in terms of η10

and η01, which are given in the Appendix A, we have found that η11 = Cη10η01,
where C depends on some known parameters. Now η10 and η01 are the lead-
ing first order of magnitude O(δ), where δ � 1, whereas ηmn, for (m,n) =
(2, 0), (0, 2), (1, 1), (1,−1) are the second order of magnitude O(δ2). Thus we may
conclude that the amplitudes ηmn for said values of (m,n) are weaker than η10

(or η01).
For either wavetrain, the dispersion relation is given by

(2.6) ω2 − gk0 − sk0
3 = 0

and the group velocity is

(2.7) cg =
dω

dk0
=
g + 3sk2

0

2ω
,

where k = k0 cos θ and l = k0 sin θ, 2θ being the angle between two wavetrains.

3. Derivation of nonlinear evolution equations

Substituting Eq. (2.5) in Eq. (2.1) and then equating the coefficients of
exp{i(mψ1 + nψ2)} on both sides of the aforesaid equations for (m,n) = (1, 0),
(0, 1), (1, 1), (1,−1), (2, 0), (0, 2) we obtain

(3.1)
d2φmn
dz2

= ∆2
mnφmn,

where

∆mn =

[{
(m+ n)k − iδ ∂

∂x1

}2

+

{
(m− n)l − iδ ∂

∂y1

}2]1/2

.

Therefore the solution of Eq. (3.1) satisfying condition (2.4) is

(3.2) φmn = ez∆mnAmn,

where Amn is a function of x1, y1, t1.
For (m,n) = (0, 0), employing the Fourier transform w.r.t. x1 and y1 defined

by

(3.3) f(Kx,Ky) =
1

2π

∞∫∫
−∞

f(x1, y1)e−i(Kxx1+Kyy1) dx1 dy1,



Modulational instability of obliquely interacting. . . 589

we obtain the following equation

(3.4)
d2φ00

dz2
= δ2K2φ00,

where K2 = K2
x +K2

y and Kx, Ky are Fourier transform parameters. On solving
Eq. (3.4) along with the condition (2.4) we get

(3.5) φ00 = eδkzA00,

where A00 is a function of Kx, Ky, t1.
We have selected only six pairs of m and n as the two third-order nonlinear

terms in the cubic Schrödinger equations (3.13) and (3.14) appear due to the
interactions of second harmonics η20, η02, η11, η1−1 with the primary harmonics
η10 and η01 together with the cubic interactions of η10 and η01. The nonlinear
terms due to the interactions of modes (1, 0) and (0, 1) with the other modes
are of fourth and higher orders and therefore those modes are not required in
deriving our third order nonlinear Schrödinger equations.

Inserting Eq. (2.5) into Eqs. (2.2) and (2.3) expanded in the Taylor series
about z = 0 up to the second order and after equating the coefficients of
exp{i(mψ1+nψ2)} on both sides of aforesaid equations for (m,n) = (1, 0), (0, 1),
(2, 0), (0, 2), (1, 1), (1,−1), we arrive at the following equations

∆mnAmn + iWmnηmn = amn,(3.6)

−iWmnAmn + gηmn + s∆2
mnηmn = bmn,(3.7)

where Wmn = (m + n)ω + iδ ∂
∂t1

and amn, bmn are due to nonlinear terms.
Applying Fourier transform for (m,n) = (0, 0) in (2.2) and (2.3) we have

δkA00 − δ
∂η00

∂t1
= a00,(3.8)

δ
∂A00

∂t1
+ gη00 + sδ2K2η00 = b00.(3.9)

If we now eliminate Amn between (3.6) and (3.7) on account of (m,n) = (1, 0),
(0, 1), we arrive at

[W 2
10 − g∆10 − s∆3

10]η10 = −iW10a10 −∆10b10,(3.10)

[W 2
01 − g∆01 − s∆3

01]η01 = −iW01a01 −∆01b01.(3.11)

In order to solve the aforesaid two sets of equations given by (3.6)–(3.9)
we introduce the perturbation expansions (following Dhar and Das [9] and
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Senapati et al. [14]) of the quantities Amn and ηmn for (m,n) = (1, 0), (0, 1),
(2, 0), (0, 2), (1, 1), (1,−1), (0, 0) as follows:

(3.12) (Amn, ηmn) =
∑
j

δj(A(j)
mn, η

(j)
mn).

Here the index j begins with j = 1 for (m,n) = (1, 0), (0, 1) and j = 2 for
(m,n) = (2, 0), (0, 2), (1, 1), (1,−1), (0, 0). After calculating the nonlinear terms
amn and bmn for (m,n) = (2, 0), (0, 2), (1, 1), (1,−1), correct up to O(δ2) and
then substituting the expansion (3.12) in (3.6) and (3.7), we solve for Amn (in
terms of η10 and η01) for (m,n) = (1, 0), (0, 1) correct up to O(δ2). Again, using
expansion (3.12) in (3.6) and (3.7), we obtain solutions for Amn and ηmn (in
terms of η10 and η01) on account of (m,n) = (2, 0), (0, 2), (1, 1), (1,−1), correct
up to O(δ2). These solutions are available in Appendix A. In a similar manner,
from Eqs. (3.8) and (3.9) in the case of (m,n) = (0, 0) we find a00 and b00, which
are at least of O(δ3). Now, it follows from Eq. (3.9) that η00 is at least of O(δ3)

(as η(2)
00 = 0) and from Eq. (3.8), it follows that, A00 is of order O(δ2). Using these

solutions, we then find a10 and b10 (in terms of η10 and η01), correct up to O(δ3).
Substituting these solutions on right side of Eq. (3.10) and simplifying the left
side of the same equation, we finally obtain a nonlinear Schrödinger equation of
the first wave packet, whose basic wave number is (k, l), of the following form to
describe the motion.

(3.13) i
∂η10

∂t1
+ iγ1

∂η10

∂x1
+ iγ2

∂η10

∂y1
+ γ3

∂2η10

∂x2
1

+ γ4
∂2η10

∂y2
1

+ γ5
∂2η10

∂x1∂y1

= Λ1η
2
10η
∗
10 + Λ2η10η01η

∗
01.

The coefficients of Eq. (3.13) are available in Appendix B. It is important to note
that the first nonlinear term on right side of Eq. (3.13) is due to self interaction of
the first wave packet whereas, the second term arises due to nonlinear interaction
of the first wave packet with the second one.

In a similar manner, for the other wave packet with basic wave number
(k,−l), we have obtained the Schrödinger equation from (3.11) as follows

(3.14) i
∂η01

∂t1
+ iγ1

∂η01

∂x1
− iγ2

∂η01

∂y1
+ γ3

∂2η01

∂x2
1

+ γ4
∂2η01

∂y2
1

− γ5
∂2η01

∂x1∂y1

= Λ1η
2
01η
∗
01 + Λ2η01η10η

∗
10.

It is to be noted that, for deriving the third order coupled nonlinear Schrö-
dinger equations, we have not used any linearity assumption. Again, the impor-
tance of introducing the general problem formulation is that in the studies of
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nonlinear evolution of water waves, nonlinear Schrödinger equations are often
used as they can properly reflect the modulational instability or the Benjamin-
Feir instability. That is why we have derived the said nonlinear equation using
a well-known multiple scale method to describe slowly modulated waves. Fur-
ther, for small wave numbers of perturbations and small amplitudes, the most
successful and elegant procedure is through the use of nonlinear Schrödinger
equation.

Equations (3.13) and (3.14) have been made dimensionless by considering
the transformations with their tildes dropped:

(3.15)
(x̃, ỹ, t̃) = (k0x1, k0y1,

√
gk0t1), (k̃, l̃) =

(
k

k0
,
l

k0

)
,

ω̃ =
ω√
gk0

, s̃ =
sk2

0

g
, (η̃10, η̃01) = (k0η10, k0η01).

For s = 0, the above coefficients of Eqs. (3.13) and (3.14) are in agreement with
the similar coefficients of the equations obtained by Onorato et al. [4]. Again,
for s = 0, the coefficients of equations (3.13) and (3.14) become the same as
those of the corresponding coefficients of Senapati et al. [14] in case of U = 0,
r = 0.

4. Stability analysis

We choose the solutions of the Schrödinger equations (3.13) and (3.14) in the
form

(4.1) η10 = α0e
−it∆ω1 ≡ η(0)

10 , η01 = β0e
−it∆ω2 ≡ η(0)

01 ,

where α0 and β0 are real constants indicating the wave steepness of the two
wavetrains and the nonlinear frequency shifts ∆ω1 and ∆ω2 satisfy the following
relations:

(4.2) ∆ω1 = Λ1α0
2 + Λ2β0

2, ∆ω2 = Λ2α0
2 + Λ1β0

2.

Next, we employ the harmonic perturbations of the aforesaid uniform solutions
as follows:

(4.3) η10 = η
(0)
10 (1 + α′), η01 = η

(0)
01 (1 + β′),

where the infinitesimal perturbations α′, β′ being complex quantities given by
α′ = α′r + iα′i and β

′ = β′r + iβ′i, where α
′
r, α′i, β

′
r and β′i being real. Inserting

these perturbed solutions (4.3) into (3.13), (3.14), linearising and separating
those equations with respect to α′, β′ into two parts, real and imaginary, we
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obtain four equations. Employing Fourier transform on the aforesaid equations
in α′r, α′i, β

′
r and β′i and assuming the t dependence in the form e−iΩt, we obtain

the equations as follows:

i(Ω− λγ1 − µγ2)α̃′i − (λ2γ3 + µ2γ4 + λµγ5 + 2Λ1α
2
0)α̃′r − 2Λ2β

2
0 β̃
′
r = 0,(4.4)

−(λ2γ3 + µ2γ4 + λµγ5)α̃′i − i(Ω− λγ1 − µγ2)α̃′r = 0,(4.5)

i(Ω− λγ1 + µγ2)β̃′i − (λ2γ3 + µ2γ4 − λµγ5 + 2Λ1α
2
0)β̃′r − 2Λ2α

2
0α̃
′
r = 0,(4.6)

−(λ2γ3 + µ2γ4 − λµγ5)β̃′i − i(Ω− λγ1 + µγ2)β̃′r = 0,(4.7)

where

(4.8) (α̃′r, α̃
′
i, β̃
′
r, β̃
′
i) =

1

2π

∞∫∫
−∞

(α′r, α
′
i, β
′
r, β
′
i)e
−i(λx+µy) dx dy

and (λ, µ) represents the perturbed wave number vector. From the condition
of nontrivial solution of Eqs. (4.4)–(4.7), we obtain the following nonlinear

Fig. 2. 3-dimensional Contour plot Gr = Im(Ω) in the perturbed wave numbers plane for
α0 = 0.1, β0 = 0.1, s=0.035 and θ = π

9
, π

8
, 3π

8
, π

2
.
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dispersion relation

(4.9) [(Ω−Q+)2 − P+(P+ − 2Λ1α
2
0)][(Ω−Q−)2 − P−(P− − 2Λ1β

2
0)]

= 4P+P−Λ2
2α

2
0β

2
0 ,

where
P± = −(λ2γ3 + µ2γ4 ± λµγ5), Q± = λγ1 ± µγ2.

The unidirectional perturbation can be found in the x-direction, by putting
µ = 0 in the following simplified from

(4.10) Ω = γ1λ±
√

(γ3λ2)2+γ3λ2Λ1(α2
0+β2

0)∓γ3λ2

√
Λ2

1(α2
0−β2

0)2+4Λ2
2α

2
0β

2
0 .

This equation is again in agreement with the Eq. (11) of [4].
In Figs. 2 and 3 we have plotted 3-dimensional contour maps of instability

growth rate for bidirectional perturbations on account of several values of θ(
θ = π

9 ,
π
8 ,

3π
8 ,

π
2

)
and s (s = 0.035, 0) by considering α0 = 0.1, β0 = 0.1. From

Fig. 3. 3-dimensional Contour plot of Gr = Im(Ω) in the perturbed wave numbers plane for
α0 = 0.1, β0 = 0.1, s = 0 and θ = π

9
, π

8
, 3π

8
,π

2
.
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these figures we have observed that the effect of capillarity results in a decrease
in the growth rate producing a stabilizing influence. Further comparing Fig. 2
with the Fig. 5 of [14] for θ = 3π

8 we have inferred that due to capillarity the
instability growth rate decreases.

In Figs. 4 and 5 we have portrayed the same contour plots of the growth rate
of instability on account of several values of θ and s in which α0 6= β0. Examining
Figs. 4 and 5 for α0 6= β0 with the corresponding Figs. 2 and 3 for α0 = β0 we
have observed that the instability regions for α0 = β0 are symmetric about the
lines λ = 0 and µ = 0 whereas for α0 6= β0 it is not so. As before in this case
also, it is found that the capillary effect produces a stabilizing influence.

In Fig. 6 we have drawn the instability growth rate Gr for unidirectional
perturbation for different values of θ (θ = 16◦, 19◦), β0 (β0 = 0.09, 0.15) and s
(s = 0.035, 0). From these figures it is observed that the capillary effect pro-
duces a decrease in the instability growth rate Gr up to a certain value of
wave number λ giving a stabilizing influence. After that the effect of capillarity
gives rise to an increase in the instability growth rate, producing a destabiliz-
ing influence. Further, these figures portray that Gr increases as θ decreases.

Fig. 4. 3-dimensional Contour plot of Gr = Im(Ω) in the perturbed wave numbers plane for
α0 = 0.1, β0 = 0.15, s = 0.035 and θ = π

24
, π

8
, π

4
, 3π

8
.
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Fig. 5. 3-dimensional Contour plot of Gr = Im(Ω) in the perturbed wave numbers plane for
α0 = 0.1, β0 = 0.15, s = 0 and θ = π

24
, π

8
, π

4
, 3π

8
.

Examining Fig. 6 with Fig. 1 of [15] for V = 0, it is found that the instability
growth rate in the situation of crossing seas is higher than the case for a single
wave.
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(right), θ = 16◦, 19◦. For continuous line s = 0.035, for dotted line s = 0.
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Fig. 7. Gr = Im(Ω) as a function of wave number λ. Here θ = 16◦ (left), θ = 19◦ (right)
α0 = 0.1, β0 = 0.09. For continuous line s = 0.035, for dotted line s = 0.

Figure 7 exhibits that the instability growth rate Gr increases with the in-
crease of the amplitude β0 of the second wavetrain for fixed value of θ.

5. Discussion along with conclusion

Starting from third order two space dimensional coupled nonlinear Schrö-
dinger equations namely (3.13) and (3.14) under the position of crossing sea
states, we have discussed analytically the modulational instability of two obli-
quely interacting capillary-gravity wave packets for infinitely deep water due to
unidirectional as well as bidirectional perturbations. Using a multiscale expan-
sion, we have derived nonlinear Schrödinger equations to study slowly modulated
waves. It is well known that the effects due to capillarity are significant for short
waves. Comparing Fig. 2, (on account of capillarity, s = 0.035) with Fig. 3 (in the
absence of capillarity, s = 0), for α0 = β0 = 0.1, we conclude that the effect of
capillarity produces a decrease in the growth rate of instability Gr. Similarly,
considering Fig. 4 (on account of s = 0.035) and Fig. 5 (on account of s = 0)
for α0 6= β0, we observe a stabilizing influence due to capillarity in the growth
rate as in the previous case. For unidirectional perturbation it is found from
Figs. 6 and 7 that growth rate of instability decreases due to the effect of capil-
larity up to certain value of the wave number λ and then instability growth rate
increases. Further, it is observed from Figs. 6 and 7 for unidirectional perturba-
tion and from Figs. 2–5 for 3-dimensional Contour maps that the growth rate
of instability for two obliquely interacting wave packets is higher than the case
of modulation of a single wave packet [15]. It has been additionally found that
the instability growth rate increases as the angle 2θ between two wave systems
decreases.
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Appendix A

A10 = − iω
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[
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∂x1
+

l

k2
0

∂
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Appendix B

γ1 =
k(3s+ 1)

2ω
, γ2 =

l(3s+ 1)

2ω
, γ3 = − k2

8ω3
+
l2 + 3s(2k2 + l2)

4ω
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γ4 = − l2

8ω3
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4ω
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2ω
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2ω2 − 1− 4s
+ 2ω − s

2ω

{
3l2k2 − 3

2
(k4 + l4)

}
,

Λ2 =
s

2ω
{2l2k2 + 3(k4 + l4)}+ ω(k2 − l2) + 2ωk2 − ω3l2(k2 − l2 − 2)

2(1 + 4l2s)

− ωk(k2 + l2 − 2k)2

k + 4sk2 − 2ω2
.
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