PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Symmetry analysis, exact solutions and conservation laws of the nonlinear time-fractional sharma-tasso-olever equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lie symmetry analysis method (LSAM) is applied to obtain all Lie symmetries of the nonlinear time-fractional Sharma-Tasso-Olever equation. The studied fractional partial differential equation (FPDEs) is reduced to some fractional ordinary differentia equations (FODEs), of which some exact solutions including the convergent power series solution are obtained. The dynamic behaviors of these exact solutions are presented graphically. In addition, the conservation laws for the obtained symmetries are constructed by Ibragimov’s theory.
Rocznik
Strony
120--132
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • School of Science, Wuhan University of Science and Technology, Wuhan, China
autor
  • School of Science, Wuhan University of Science and Technology, Wuhan, China
  • Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan, China
Bibliografia
  • 1. Okposo, N.I., Raghavendar, K., Khan, N., G´omez-Agullar, J.F., & Jonathan, A.M. (2024). New exact optical solutions for the Lakshmanan-Porsezian-Daniel equation with parabolic law nonlinearity using the φ6-expansion technique. Nonlinear Dynamics, 1-21.
  • 2. Okposo, N.I., Raghavendar, K., G´omez-Agullar, J.F., Khan, N., & Jonathan, A.M. (2024). On the exploration of new solitary wave solutions for the classical integrable Kuralay-IIA system of equations. Physica Scripta, 99(11), 115260.
  • 3. Kumar, S., Rani, S., & Ma, W.X. (2024). Lie symmetries, modulation instability, conservation laws, and the dynamic waveform patterns of several invariant solutions to a (2+1)-dimensional Hirota bilinear equation. Discrete and Continuous Dynamical Systems-Series S, DOI: 10.3934/
  • dcdss.2024136.
  • 4. Hamid, I., & Kumar, S. (2024). Newly formed solitary wave solutions and other solitons to the (3+1)-dimensional mKdV-ZK equation utilizing a new modified Sardar sub-equation approach. Modern Physics Letters B, 2550027.
  • 5. Lian, Z.J., & Lou, S.Y. (2005). Symmetries and exact solutions of the Sharma-Tass-Olver equation. Nonlinear Analysis: Theory, Methods & Applications, 63, e1167-e1177.
  • 6. Wang, S., Tang, X.Y., & Lou, S.Y. (2004). Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos, Solitons & Fractals, 21, 231-239.
  • 7. Pavani, K., Raghavendar, K., & Aruna, K. (2024). Soliton solutions of the time-fractional Sharma-Tasso-Olver equations arise in nonlinear optics. Optical and Quantum Electronics, 56, 748.
  • 8. Sontakke, B.R., & Shaikh, A. (2016). Solving time fractional Sharma-Tasso-Olever equation using fractional complex transform with iterative method. British Journal of Mathematics & Computer Science, 19(1), 1-10.
  • 9. Roy, R., Akbar, M.A., & Wazwaz, A.M. (2018). Exact wave solutions for the nonlinear time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation in mathematical physics. Optical and Quantum Electronics, 50, 25.
  • 10. Uddina, M.H., Khanb, M.A., Akbarb, M.A., & Haque, M.A. (2019). Multi-solitary wave solutions to the general time fractional Sharma-Tasso-Olver equation and the time fractional Cahn-Allen equation. Arab. Journal of Basic and Applied Sciences, 26(1), 193-201.
  • 11. Aljoudi, S. (2021). Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. Applied Mathematics and Computation, 405, 126237.
  • 12. Butt, A.R., Zaka, J., Akg¨ul, A., & El Din, S.M. (2023). New structures for exact solution of nonlinear fractional Sharma-Tasso-Olver equation by conformable fractional derivative. Results in Physics, 50, 106541.
  • 13. Malagi, N.S., Veeresha, P., Prasanna, G.D., Prasannakumara, B.C., & Prakasha, D.G. (2023). Novel approach for nonlinear time-fractional Sharma-Tasso-Olever equation using Elzaki transform. An International Journal of Optimization and Control: Theories & Applications, 13(1), 46-58.
  • 14. Podlubny, I. (1999). Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications (Vol. 198). Elsevier.
  • 15. Daftardar-Gejji, V., & Jafari, H. (2005). Adomian decomposition: a tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications, 301(2), 508-518.
  • 16. Meerschaert, M.M., Scheffler, H.P., & Tadjeran, C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211(1), 249-261.
  • 17. Momani, S., & Odibat, Z. (2007). Homotopy perturbation method for nonlinear partial differentia equations of fractional order. Physics Letters A, 365(5-6), 345-350.
  • 18. Zhang, S., & Zhang, H.Q. (2011). Fractional sub-equation method and its applications to nonlinear fractional PDEs. Physics Letters A, 375(7), 1069-1073.
  • 19. Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differentia equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248-1255.
  • 20. Gazizov, R.K., & Kasatkin, A.A. (2013). Construction of exact solutions for fractional order differential equations by the invariant subspace method. Computers & Mathematics with Applications, 66(5), 576-584.
  • 21. Gazizov, R.K., Kasatkin, A.A., & Lukashchuk, S.Y. (2007). Continuous transformation groups of fractional differential equations. Vestnik USATU, 9, 125-135.
  • 22. Feng, Y.Q., & Yu, J.C. (2023). Lie group method for constructing integrating factors of first-order ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 54(2), 292-308.
  • 23. Zhang, Z.Y., & Li, G.F. (2020). Lie symmetry analysis and exact solutions of the timefractional biological population model. Physica A: Statistical Mechanics and Its Applications, 540, 123134.
  • 24. Zhang, Z.Y., & Lin, Z.X. (2021). Local symmetry structure and potential symmetries of timefractional partial differential equations. Studies in Applied Mathematics, 147(1), 363-389.
  • 25. Zhu, H.M., Zhang, Z.Y., & Zheng, J. (2022). The time-fractional (2+1)-dimensional Hirota-Satsuma-Ito equations: Lie symmetries, power series solutions and conservation laws. Communications in Nonlinear Science and Numerical Simulation, 115, 106724.
  • 26. Zhu, H.M., Zheng, J., & Zhang, Z.Y. (2023). Approximate symmetry of time-fractional partial differential equations with a small parameter. Communications in Nonlinear Science and Numerical Simulation, 125, 107404.
  • 27. Yu, J.C., & Feng, Y.Q. (2022). Lie symmetry analysis and exact solutions of space-time fractional cubic Schr¨odinger equation. International Journal of Geometric Methods in Modern Physics, 19, 2250077.
  • 28. Yu, J.C., & Feng, Y.Q. (2024). Lie symmetry analysis, power series solutions and conservation laws of (2+1)-dimensional time fractional modified Bogoyavlenskii-Schiff equations. Journal of Nonlinear Mathematical Physics, 31, 27.
  • 29. Nass, A.M. (2019). Symmetry analysis of space-time fractional Poisson equation with a delay. Quaestiones Mathematicae, 42, 1221-1235.
  • 30. Feng, Y.Q., & Yu, J.C. (2021). Lie symmetry analysis of fractional ordinary differential equation with neutral delay. AIMS Mathematics, 6, 3592-3605.
  • 31. Yu, J.C., & Feng, Y.Q. (2023). Lie symmetry, exact solutions and conservation laws of some fractional partial differential equations. Journal of Applied Analysis & Computation, 13, 1872-1889.
  • 32. Yu, J.C., & Feng, Y.Q. (2024). On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws. Chaos, Solitons & Fractals, 182, 114855.
  • 33. Yu, J.C., & Feng, Y.Q. (2024). Group classification of time fractional Black-Scholes equation with time-dependent coefficients. Fractional Calculus and Applied Analysis, 27, 2335-2358.
  • 34. Ibragimov, N.H. (2011). Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical, 44, 432002.
  • 35. Ibragimov, N.H. (2007). A new conservation theorem. Journal of Mathematical Analysis and Applications, 333, 311-328.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f208340e-6526-4c8c-b6ea-6f7ffe4bc116
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.