Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
Abstrakty
The article presents the concept of determining constrained modulus—M0, initial shear modulus—G0, Young modulus—E, and rigidity index—IR on the basis of parameters from static penetration tests CPTU (Piezocone Penetration Testing), SCPTU (Seismic Piezocone Penetration Testing) and dilatometer tests DMT (Flat Dilatometer Test), SDMT (Seismic Flat Dilatometer Test). The basis for constructing the empirical relationships between the mentioned modules and parameters from the CPTU and DMT studies was to determine the factors that affect these relationships. The article discusses the impact of the following factors; geological and geotechnical conditions, conditions of recording measurements in CPTU and DMT tests, factors relating to the CPTU and DMT testing methods, factors affecting reference parameters from laboratory tests, factors related to subsoil properties. The basis for obtaining the empirical relationships for determining the analyzed modules and rigidity index were extensive research of the soils of various origins, in Poland. Measurement uncertainties and factors influencing the recorded parameters in the CPTU study were documented by the studies of the Norwegian Geotechnical Institute and the former Department of Geotechnics of the Agricultural University in Poznań. In these studies, penetrometers from several reputable manufacturers were used. The article summarizes the established empirical relationships for individual modules, taking into account the effect of over consolidation. It also comments on the interrelationship between constrained modulus M0 from CPTU and DMT test for soils in Poland.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
304--332
Opis fizyczny
Bibliogr. 79 poz., rys., tab.
Twórcy
autor
- Poznań University of Life Sciences, Poland
autor
- Institute of Geology, Adam Mickiewicz University, Poznan, Poland
autor
- Norwegian Geotechnical Institute, Oslo, Norway
Bibliografia
- [1] Baldi G., Belotti R., Ghionna V.N., Jamiolkowski M., Lo Presti D.C.F. (1989). Modulus of sand from CPT’s and DMT’s. Proc. of 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, Balkema, Rotterdam, vol. 1, 165–179.
- [2] Baligh M.M. (1975). Theory of deep static cone penetration resistance. Department of Civil and Environmental Engineering Massachusetts. Institute of Technology. Report No R, 75–56.
- [3] Banach S. (1950). Mechanika. Monografie matematyczne, Czytelnik, Kraków (in Polish).
- [4] Bogucki A. Voloshyn P., Tomeniuk O. (2014). Zapadowość plejstoceńskich poziomów lessowo-glebowych i kriogenicznych Wołynia i Podola. Przegląd Geologiczny Nr.10/2, t. 62, 553–559.
- [5] Box G.E.P., Hunter, W.G., Hunter J.S. (1978). Statistics for experiments – an introduction to design, data analysis and model building. John Wiley & Sons, New York.
- [6] Draper N.R., Smith H. (1981). Applied regression analysis. John Wiley & Sons, New York.
- [7] Durgunoglu M.T., Mitchell J.K. (1973). Static penetration resistance of soils. University of California, Berkley, Report No 14/24.
- [8] Eslaamizaad, S, Robertson, P.K. (1996). Cone penetration test to evaluate bearing capacity of foundations in sands, Proc. of 49th Canadian Geotechnical Society, 429–438.
- [9] Frankowski Z., Majer E., Pietrzkowski P. (2010). Geological and geotechnical problem of loess deposits from south-eastern Poland. Proc. of the International Geotechnical Conference “Geotechnical challenges in megacities”, vol. 2, Moscow, 546 – 553.
- [10] Gauer P., Lunne T., Młynarek Z., Wołyński W., Kroll M. (2002). Quality of CPTU – statistical analyses of CPTU data from Onsoy. NGI, Report No 20001099, Oslo.
- [11] Godlewski T., Szczepański T. (2013). Determination of soil stiffness parameters using in-situ seismic methods-insight in repeatability and methodological aspects. R. Q. Coutinho & P.W. Mayne (eds.) Geotechnical and Geophysical Site Characterization 4,. Proc. of 4th International Conference on Geotechnical and Geophisical Site Investigations. Taylor & Francis Group, London, 441–446.
- [12] Guidelines for Design of Wind-Turbines – DNV/Risa (2002). Det Norske Veritas, Copenhagen
- [13] Hardin B.O. 1978. The nature of stress-strain behaviour for soils. Proc. ASCE Geotechnical Div. Specialty Conf. on Earthquake Eng. and Soil Dynamics, Pasadena. 1, 3–90.
- [14] Hegazy Y.A., Mayne P.W. (1995). Statistical correlations between Vs and CPT data for different soil types. Proc. of Symposium on Cone Penetration Testing (CPT’95), Swedish Geotechnical Society, Linkoping, Vol. 2, 173–178.
- [15] Jamiolkowski M. Lo Presti D.C.F., Manassero M. (2001). Evaluation of relative density and shear strength of sands from CPT and DMT. CC. Ladd Symposium, Cambridge, Massachusetts.
- [16] Kardan C. Viking K., Nik L., Larsson S. (2016). Influence of operator performance on quality of CPTU results. Proc. of 17th Nordic Geotechnical Meeting, Challenges in Nordic Geotechnic, 25th – 28th of May 2016, Reykjavik, 153–158.
- [17] Karslud K., Lunne T., Kert A., Strandvik S. (2005). CPTU correlation for clays. Proc. of XVIth International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, 693–702.
- [18] Keaveny I., Mitchell J.K. (1986) Strength of fine-grained soils using the piezo cone. Use of in-situ tests in Geotechnical Engineering (GSP 6), ASCE, 668–685.
- [19] Krage, C.P., Broussard, N.S. i DeJong, J.T. (2014). Estimating rigidity index (IR) based on CPT measurements. Proc. of 3rd International Symposium on Cone Penetration Testing. Las Vegas, Nevada, 727–735.
- [20] Krygowski B. (1961). Geografia fizyczna Niziny Wielkopolskiej: Geomorfologia, Część 1. Państwowe Wydawnictwo Naukowe, Warszawa (in Polish).
- [21] Kulhavy F.H., Mayne P.H. (1990). Manual on estimating soil properties for foundation design. Electro Power Research Institute Research Project 1493-6, EPRI, Palo Alto, Cal.
- [22] Lacasse S, Nadim, F. (1994). Reliability issues and future challenges in geotechnical engineering for offshore structures. In: International Conference. Behaviour of offshore structures. Boss94, Cambridge Mass.
- [23] Lechowicz Z., Rabarijoely S., Galas P., Kiziewicz D. (2011). Settlement evaluation of spread foundation on heavily preconsolidated cohesive soils. Annals of Warsaw University of Life Sciences – SGGW, Land Reclamation, No 43(2), 113–120.
- [24] Lee J. K. (1974). Soil Mechanics – New Horizons, Chapter 3. Lumb P. (ed.) Application of statistics in soil mechanics. Newness – Butterworth, London
- [25] Lee S.H.H, Stoke K.H. (1986). Investigation of low amplitude shear wave velocity in anisotropic materials. Geotechnical Report No. GR 86-6, Civil Engineering Department, University of Texas, Austin.
- [26] Lindgård, A., Gundersen, A., Lunne, T., L Heureux, J. S., Kåsin, K., Haugen, E., Emdal, A., Carlson, M., Veldhuijzen, A., Massimiliano, S. (2018). Effect of cone type on measured CPTU results from the Tiller-Flotten quick clay test site. Fjellsprengningsteknikk, Bergmekanikk/Geoteknikk. Norwegian Geotechnical Society (NGF), Oslo, Norway.
- [27] Long M. (2002). The Quality of Continuous Soil Samples. Geotechnical Testing Journal, vol. 25, No 3, 1–18.
- [28] Lunne T., Berre T., Andersen K.H., Strandvik S., Sjursen M. (2005). Effect of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Canadian Geotechnical Journal, 1–50.
- [29] Lunne T. Strandvik S., Kasin K., L’Heureux J.S, Haugen E., Uruci E., Veldhuijzen A., Carlson M., Kassner M. (2018). Effect of cone penetrometer type on CPTU results at a Soft Clay Test Site in Norway. Cone Penetration Testing 2018 – Hicks, Pisanò & Peuchen (Eds), CRC Press, 417–422.
- [30] Lunne T., Christophersen H.P. (1983). Interpretation of cone penetrometer data for offshore sands. Proc. of the Offshore Technology Conference, Richardson, Texas.
- [31] Lunne T., Robertson P.K., Powell J. (1997). Cone penetration testing in geotechnical practice. E&FN Spon, London.
- [32] Marchetti S. (1980). In situ tests by flat dilatometer. ASCE, JGED, v. 106, No.GT3.
- [33] Marchetti S. (1998). Dilatometer Testing (DMT) One-day short course. International Conference on Site Characterization, Atlanta.
- [34] Marchetti S. (2012). The Seismic Dilatometer for in-situ soil investigations. Proc. of Indian Geotechnical Conference, December 3–15, 2012, Delhi, Paper No. C312.
- [35] Marchetti S., Monaco P., Totani G., Marchetti D. (2008). In-situ tests by seismic dilatometer (SDMT). Geotech. Spec. Pub. GSP 180, From Research to Practice in Geotechnical Engineering, 8–11.
- [36] Massarsch, K. R. 2004. Deformation properties of fine-grained soils from seismic tests. Keynote lecture International Conference on Site Characterization, ISC’2, 19 – 22 Sept. 2004, Porto.
- [37] Mayne P. W. (2001). Stress-strain-strength flow parameters from enhanced in-situ tests. Proc. of The International Conference on In-situ Measurement of Soil Properties and Case Histories. Bali, p. 27–48.
- [38] Mayne P. W. (2006). In-situ test calibration for evaluating soil parameters. In-situ testing. Singapore Workshop, 1–56.
- [39] Mitchell J.K., Gardner (1975) In-situ measurements of volume changes characteristics. Proc. of ASCE Conference on In-situ Measurements of Soil Properties. North Carolina State University, Raleigh, Vol. II, 279–345.
- [40] Młynarek Z. (1978) Czynniki wpływające na opór stożka podczas statycznego sondowania gruntów spoistych. Roczniki Akademii Rolniczej w Poznaniu, z.83 (in Polish).
- [41] Młynarek Z. (2007). Site investigation and mapping in urban area. Proc. of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid. Vol. 1 Edited by V. Cuéllar et al. Millpress Science Publishers, Rotterdam, 175–202.
- [42] Młynarek Z. (2009). Podłoże gruntowe, a awaria budowlana. Proc. of Konferencja Naukowo-Techniczna „Awarie Budowlane”, Szczecin-Międzyzdroje 2009 (in Polish).
- [43] Młynarek Z. (2010) Quality of in-situ and laboratory test contribution to risk management. Proc. of 14th Danube European Conference on Geotechnical Engineering. Bratislava, Slovakia, 2010.
- [44] Młynarek Z. Stefaniak K., Wierzbicki J. (2012) Geotechnical parameters of alluvial soils from In-situ tests. Archives of Hydro-Engineering and Environmental Mechanics, vol.59, no. 1–2, 63–81.
- [45] Młynarek Z. (2010). Regional report for East European countries. Proc. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA.
- [46] Młynarek Z., Gogolik S., Gryczmański M., Uliniarz R. (2013) Settlement analysis of a cylindrical tank based on CPTU and SDMT results. Proc. of 4th Int. Conference Geotechnical Site Characterization. Recife, Frances Taylor, 2013, 1585–1590.
- [47] Młynarek Z., Niedzielski A., Tschuschke W. (1982). The static penetration results of varved clays. Proc. of Second European Symposium on Penetration Testing, Amsterdam, Balkema, 715–720.
- [48] Młynarek Z., Sanglerat G. (1981). The Bearing capacity equation for static sounding of Pliocene Clays. Proc. of 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 523–526.
- [49] Młynarek Z., Tschuschke W., Wierzbicki J., Marchetti S. (2006). An Interrelationships between shear and deformation parameters of gytia and peat from CPT and DMT tests. Proc. of XII Danube European Conference on Geotechnical Engineering, Ljubliana 2006, 89–95.
- [50] Młynarek Z., Wierzbicki J., Bogucki M. (2015). Geotechnical characterization of peat and gyttja by Means of Different In-situ Tests. Proc. of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, Edinburgh, 3097–3102.
- [51] Młynarek Z., Wierzbicki J., Long M. (2008). Factors affecting CPTU and DMT characteristics in organic soils. Proc. of the 11th Baltic Sea Geotechnical Conference. (Eds: Z. Młynarek, Z. Sikora & E. Dembicki). Vol. 1, 407–417.
- [52] Młynarek Z., Wierzbicki J., Lunne T. (2016) On the influence of overconsolidation effect on the compressibility assessment of subsoil by means of CPTU and DMT, Annals of Warsaw University of Life Sciences, Land Reclamation No 48 (3), 189–200.
- [53] Młynarek Z., Wierzbicki J., Lunne T. (2021). Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil. Studia Geotechnica et Mechanica, 2021. 195–205.
- [54] Młynarek Z., Wierzbicki J., Mańka M. (2015). Constrained, deformation and shear moduli of loesses from CPTU and SDMT tests. Proc. of 3rd International Conference on the Flat Dilatometer, Rome 2015, 579.
- [55] Młynarek Z., Wierzbicki J., Monaco P. (2022). Use of the DMT and CPTU method to assess the G0 profile in the subsoil. Proc. of International Conference, Cone Penetration Testing, Bologne, Gottardi Guido, Tonni Laura (eds.): Cone Penetration Testing 2022, 2022, London, Taylor & Francis Group, CRC Press, 570–576.
- [56] Młynarek Z., Wierzbicki J., Stefaniak K. (2013). Deformation characteristics of the overconsolidated subsoil form CPTU and SDMT tests. Geotechnical and Geophysical Site Characterization 4 – Proc. of the 4th International Conference on Site Characterization 4, ISC-4, 2013. Taylor&Francis Group, London, vol. 2, 1189–1193.
- [57] Młynarek Z., Wierzbicki J., Stefaniak K. (2018). Czynniki wpływające na ocenę wskaźnika sztywności (IR) z badań in-situ. Acta Sci. Pol. Architectura, 17(3), 17–26.
- [58] Młynarek Z., Wierzbicki J., Wołyński W. (2005). Use of interpolation methods for geotechnical profiling. Studia Geotechnica et Mechanica, vol. XXVII, No 3–4, 5–13.
- [59] Młynarek Z., Wierzbicki J., Wołyński W. (2007). An approach to 3D subsoil model based on CPTU results. Proc. of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid. Vol. 3. Millpress, Rotterdam, 1721–1726.
- [60] Młynarek Z., Sanglerat G., Sanglerat Th. (1982). The statistical analysis of certain factors influencing cone resistance during static sounding of cohesive soils. Proc of 2nd European Symposium on Penetration Testing. Balkema, Amsterdam, 821–834.
- [61] Monaco P., Totani G., Calabrese M. (2007). DMT-Predicted vs Observed Settlements: A review of the available experience. Studia Geotechnica et Mechanica vol. XXIX No 1–2, 103–120.
- [62] Paniagua P., Lunne T., Gundersen A., Heureux L., Kasin K. (2021) CPTU results at a silt test site in Norway: effect of cone penetrometer type. IOP Conf. Ser.: Earth Environ. Sci. Volume 710, 18th Nordic Geotechnical Meeting 18–19 January 2021, Helsinki, Finland, 1–10.
- [63] Powel J.M., Lunne T. (2005). A comparison of different piezo cones in UK clays. Proc. of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Millpress Science Publishers/IOS Press, 729–734.
- [64] Powell J.M. (2005). In situ testing. General report. Proc. of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Millpress Science Publishers/IOS Press, 729–734.
- [65] Rabarijoely S. (1999). Wykorzystanie badań dylatometrycznych do wyznaczania parametrów gruntów organicznych obciążonych nasypem. PhD Thesis SGGW University Warsaw (in Polish).
- [66] Robertson P. (2009). Interpretation of cone penetration tests – a unified approach. Canadian Geotechnical Journal, 46, 1337–1355.
- [67] Robertson P.K, Cabal K.L. (2012). Guide to cone penetration testing for geotechnical engineering. Greg Drilling&Testing, Inc.
- [68] Rząsa S., Młynarek Z. (1968). Właściwości fizyczne glin zwałowych zlodowacenia środkowopolskiego (Riss) Niziny Wielkopolskiej. Poznańskie Towarzystwo Przyjaciół Nauk Rolniczych i Leśnych, T. XXIV, Poznań, (in Polish).
- [69] Rzeźniczak, J., Młynarek, Z., Gogolik, S., & Michalak, J. (2019). Causes of failure of a four-store building and reconstruction concept. MATEC Web of conferences 284, 03008. ICSF Singh, S. (2020). Different causes of foundation failure. Civil Engineering Web.
- [70] Sandbarkken G., Berre T., Lacasse S. (1986). Oedometer testing of the Norwegian Geotechnical Institute. Consolidation of soils; testing and evaluations. ASTM Special Technical Publication, 892.
- [71] Sanglerat G. (1972). The Penetrometer and Soil Exploration, Elsevier, Amsterdam.
- [72] Senneset K., Janbu N., Svano G. (1982). Strength and deformation parameters from cone penetration tests. Proc. of 2nd European Symposium on Penetration Testing ESOPT-II, Amsterdam, Balkema Pub. Rotterdam, 863–870.
- [73] Stefaniak K. (2014). Wybrane osady aluwialne jako podłoże budowlane i materiał do budowli ziemnych. PhD thesis (in Polish). University of Life Science, Poznań, Poland.
- [74] Tanaka H., Nishida K. (2007). Suction and shear wave velocity measurements for assessing sample quality. Studia Geotechnica et Mechanica, No 1–2, 163–175.
- [75] Topolnicki M., Kłosiński B., (2023) Wytyczne wzmacniania podłoża gruntowego kolumnami sztywnymi. Wydawnictwo Naukowe PWN SA (in Polish).
- [76] Wierzbicki J. (2010). Ocena prekonsolidacji podłoża metodami in-situ w aspekcie jego genezy. Rozprawy naukowe z. 410, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu (in Polish).
- [77] Winter B.J., Brown D.R., Michels K.M. (1991). Statistics Principal in Experimental Design. McGraw-Hill, New York.
- [78] You S. (2004). In-situ soil testing from mechanics to interpretation, J.K. Mitchell Lecture. Proc. of Int. Conference Geotechnical and Geophysical Site Characterization, ISC-2, Porto, Viana da Fonseca, Mayne (eds.), Millpress, 3–38.
- [79] Zięba Z. (2013). Wpływ cech kształtu cząstek drobnoziarnistych gruntów niespoistych na ich wodoprzepuszczalność. Uniwersytet Przyrodniczy we Wrocławiu, PhD thesis (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f20620ff-e361-4aa4-99f2-2a605430696b