PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Biocidal Agent Layer on Selected Properties of the Blown Polyethylene Film

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the problems connected with applying a biocidal substance onto the surface of a blown extruded polyethylene film in order to improve the functional properties of the film while maintaining its processing properties unchanged. The objective of the study was to determine the relationship between biocide application method and selected properties of the tube film. Two methods of biocide application onto the film surface were developed: one relied on spraying the biocide onto the hot melt surface directly during the extrusion process, while in the other the biocide was sprayed horizontally onto the blown film after the extrusion process. Biocide distribution uniformity, friction coefficients and surface free energy of the modified film were examined, and the quality and mechanical strength of heat- sealed joints were estimated. In addition, the geometric properties of the blown film were determined.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. ASTM D5946-17 – Standard test method for corona-treated polymer films using water contact angle measurements.
  • 2. ASTM F88 – Standard test method for seal strength of flexible barrier materials.
  • 3. Biswas K., Khandelwal S., Maiti S. N.: Mechanical and thermal properties of teak wood flour/starch filled high density polyethylene composites. International Polymer Processing, 34, 2019, 209-218.
  • 4. Ghosh S. K., Das T. K., Ghosh S., Ganguly S., Nath K., Das N. C.: Physico-mechanical, rheological and gas barrier properties of organoclay and inorganic phyllosilicate reinforced thermoplastic films. Journal of Applied Polymer Science, 2020, https://doi. org/10.1002/app.49735.
  • 5. Glowik-Lazarczyk K., Jurczyk S., Chmielnicki B., Konieczny J., Labisz K.: Influence of oxo-degradable PE recyclate addition on the degradation of commercial low density polyethylene (PE-LD). Journal of Environmental Protection and Ecology, 2017, 18, 947-961.
  • 6. Goddard J. M., Hotchkiss J. H.: Rechargeable Antimicrobial Surface Modification of Polyethylene. Journal of Food Protection 2008, 71, 10, 2042–2047. DOI: https://doi.org/10.4315/0362- 028X-71.10.2042.
  • 7. ISO 527-1:2019 – Plastics – Determination of tensile properties – Part 1: General principles.
  • 8. ISO 8295 – Plastics – Film and sheeting – Determination of the coefficients of friction.
  • 9. Jacquelot E., Espuche E., Gérard J. F., Duchet J., Mazabraud P.: Morphology and gas barrier properties of polyethylene-based nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2005, 44, 2. DOI: https://doi.org/10.1002/polb.20707.
  • 10.Jańczuk B., Białopiotrowicz T., Zdziennicka A.: Some remarks on the components of the liquid surface free energy. Journal of Colloid and Interface Science, 1999, 211, 96-103.
  • 11. Kłonica M.; Kuczmaszewski J. Determining the value of surface free energy on the basis of the contact angle. Advances in Science and Technology Research Journal 2017, 11 (1), 66–74, https:// doi.org/10.12913/22998624/68800.
  • 12. Kłonica M.; Kuczmaszewski J.; Kwiatkowski M.; Ozonek J. Polyamide 6 surface layer following ozone treatment. International Journal of Adhesion and Adhesives 2016, 64, 179–187, https://doi. org/10.1016/j.ijadhadh.2015.10.017.
  • 13. Kubit A., Trzepiecinski T., Kłonica M., Hebda M., Pytel M.: The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test. Composites Part B 176 (2019) 107217.
  • 14. Kuczmaszewski J.: Fundamentals of metal-metal adhesive joint design. Politechnika Lubelska. Oddział PAN w Lublinie. Lublin, 2006.
  • 15. Llop C., Manrique A., Navarro R., Mijangos C., Reinecke H.: Control of the migration behavior of slip agents in polyolefin-based films. Polymer Engineering & ScienceVolume 2011, 51, 9. DOI: https://doi.org/10.1002/pen.21963.
  • 16. Malen E FABS 23-D022 – material data sheet: https://basellorlen.pl/wp-content/uploads/2020/08/ ML_E_FABS_23_D022_TDS_2020_02_05_ rev_9_EN.pdf. Access: 09.10.2020.
  • 17. Merkel K., Lenża J., Rydarowski H., Pawlak A., Wrzalik R.: Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene). Journal of Materials Research, 2017, 32, 451-464.
  • 18. Nasiri A., Gastaldi E., Gontard N., Peyron S.: Multi-faceted migration In food contact polyethylene-based nanocomposite packaging. Applied Clay Science, 2020, 198. Article ID 105803.
  • 19. Noori H., Jain M., Nielsen K., Brandys F.: Influence of metallic substrate surface engineering on peel resistance of adhesively bonded polymer film. Journal of Adhesion Science and Technology 2015, 29, 13, 1403-1413. DOI: https://doi.org/10.1080/01 694243.2015.1031442.
  • 20. Novák I., Pollák V., Chodák I.: Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma. Plasma Processes and Polymers 2006, 3, 4-5. DOI: https://doi.org/10.1002/ppap.200500163.
  • 21. Ramirez J. C. C., Tumolva T. P.: Analysis and optimization of water-based printing ink formulations for polyethylene films. Applied Adhesion Science 2018, 6, 1. https://doi.org/10.1186/s40563-017-0102-z.
  • 22. Rezić I., Haramina T., Rezić T.: Metal nanoparticles and carbon nanotubes – perfect antimicrobial nanofillers in polymer-based food packaging materials. Food Packaging 2017, 497-532. DOI: https://doi. org/10.1016/B978-0-12-804302-8.00015-7.
  • 23. Sadeghnejada A., Aroujalianab A., Raisiab A., Fazelab S.: Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surface and Coatings Technology, 2014, 245, 1-8. DOI: https://doi.org/10.1016/j.surfcoat.2014.02.023.
  • 24. Seungran Yoo, Holloman C., Tomasko D., Koelling K., Pascall M. A.: Effect of High Pressure Processing on the Thermal and Mechanical Properties of Polyethylene Films Measured by Dynamical Mechanical and Tensile Analyses. Packaging Technology and Science 2013, 27, 3. DOI: https://doi. org/10.1002/pts.2021.
  • 25. Sheeja M. O.; Juraij K., Sneha S. P., Ashitha K., Aleena L.S., Sujith A.: Polyethylene-g-Starch Nanoparticle Biocomposites: Physicochemical Properties and Biodegradation Studies. Polymer Composites, 2018, 39, S1, E426-E440.
  • 26. Sikora, J., Majewski Ł., Puszka, A.: Modern biodegradable plastics – processing and properties: part I. Materials, 2020, 13, 1986.
  • 27. Srinivasa Kartik Nemani, Rama Kishore Annavarapu, Behrouz Mohammadian, Asif Raiyan, Jamie Heil, Mohammad Ashraful Haque, Ahmed Abdelaal, Hossein Sojoudi: Surface Modification of Polymers: Methods and Applications. Advanced Materials Interfaces 2018, 5, 24. DOI: https://doi. org/10.1002/admi.201801247.
  • 28. Suberlyak O., Krasinskyi V., Moravskyi V., Gerlach H., Jachowicz T.: Influence of aluminosilicate filler on the physicomechanical properties of polypropylene-polycaproamide composites. Materials Science 2014, 50, 2, 296-302. DOI: https://doi. org/10.1007/s11003-014-9721-8.
  • 29. Suresh, B., Maruthamuthu, S., Kannan, M. et al.: Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal 2011, 43, 398–406. DOI: https:// doi.org/10.1038/pj.2010.147.
  • 30. Suresh, B., Maruthamuthu, S., Khare, A. et al.: Influence of thermal oxidation on surface and thermo-mechanical properties of polyethylene. Journal of Polymer Research 2011, 18, 2175–2184. DOI: https://doi.org/10.1007/s10965-011-9628-0.
  • 31. Yang Zhong, Janes D., Yong Zheng, Hetzer M., De Kee D.: Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite films. Polymer Engineering & Science 2007, 47, 7. DOI: https://doi.org/10.1002/pen.20792.
  • 32. Zhang X. M., Elkoun S., Ajji A., Huneault M. A.: Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer, 2004, 45, 217-229.
  • 33. Żenkiewicz M.: New method of analysis of the surface free energy of polymeric materials calculated with Owens-Wendt and Neumann methods. Polimery 2006, 51, 584-587. M3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f200a059-b18c-4438-b401-c5dba461156f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.