Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a numerical model of field-assisted Ag+–Na+ ion exchange in glass, used to determine Ag+ ion concentration contours in cross-sections of channel waveguides. Space charge density was used as a modeling parameter, with different values adopted separately under the mask and in the region of the mask window. Based on the results of simulations, it can be stated that the space charge distribution under the mask has a decisive influence on the diffusion range of Ag+ ions into the glass and on the shape of silver ion concentration contours corresponding to the maximum range of Ag+ ions diffusion. Charge generated within the diffusive structure influences the shape of silver ion concentration contours near the mask’s edge and affects the thickness of the polarized layer under the mask within the waveguide’s optical structure. Modeling results indicate a significant influence of factors affecting space charge density distribution in glass on the results of forming channel waveguides in the field-assisted process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
641--653
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
- [1] TERVONEN A., HONKANEN S., WEST B.R., Ion-exchanged glass waveguide technology: a review, Optical Engineering 50(7), 2011, article ID 071107, DOI:10.1117/1.3559213.
- [2] WEST B., Ion-exchanged glass waveguides, [In] The Handbook of Photonics, [Eds.] M.C. Gupta, J. Ballato, 2nd Ed., CRC Press, 2007, pp. 13-1–13-35.
- [3] HONKANEN S., WEST B.R., YLINIEMI S., MADASAMY P., MORRELL M., AUXIER J., SCHÜLZGEN A., PEYGHAMBARIAN N., CARRIERE J., FRANTZ J., KOSTUK R., CASTRO J., GERAGHTY D., Recent advancesin ion exchanged glass waveguides and devices, Physics and Chemistry of Glasses – European Journal of Glass Science and Technology Part B 47(2), 2006, pp. 110–120.
- [4] YUNJI YI, HUANRAN WANG, YU LIU, MINGHUI JIANG, XIBIN WANG, FEI WANG, DAMING ZHANG, Multilayer hybrid waveguide amplifier for three-dimension photonic integrated circuit, IEEE Photonics Technology Letters 27(22), 2015, pp. 2411–2413, DOI:10.1109/LPT.2015.2467175.
- [5] ROTH J.-P., KÜHLER T., GRIESE E., Low loss optical MMI-based splitter based on a semi-analytical modeling approach, Optical and Quantum Electronics 50(2), 2018, article ID 78, DOI:10.1007/s11082-018-1348-9.
- [6] STOSCH J.H., KÜHLER T., GRIESE E., Analysis and optimisation of bidirectional optical couplers in PCBs, Optical and Quantum Electronics 50(2), 2018, article ID 109, DOI:10.1007/s11082-018-1379-2.
- [7] CASALE M., BUCCI D., BASTARD L., BROQUIN J.-E., Hybrid erbium-doped DFB waveguide laser madeby wafer bonding of two ion-exchanged glasses, Ceramics International 41(6), 2015, pp. 7466–7470, DOI:10.1016/j.ceramint.2015.02.067.
- [8] CHENG D., SAARINEN J., SAARIKOSKI H., TERVONEN A., Simulation of field-assisted ion exchange forglass channel waveguide fabrication: effect of nonhomogeneous time-dependent electric conductivity, Optics Communications 137(4–6), 1997, pp. 233–238, DOI:10.1016/S0030-4018(97)00013-8.
- [9] ALBERT J., LIT J.W.Y., Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides, Applied Optics 29(18), 1990, pp. 2798–2804, DOI:10.1364/AO.29.002798.
- [10] WEST B.R., MADASAMY P., PEYGHAMBARIAN N., HONKANEN S., Modeling of ion-exchanged glass waveguide structures, Journal of Non-Crystalline Solids 347(1–3), 2004, pp. 18–26, DOI:10.1016/j.jnoncrysol.2004.09.013.
- [11] TERVONEN A., A general model for fabrication processes of channel waveguides by ion exchange, Journal of Applied Physics 67(6), 1990, pp. 2746–2752, DOI:10.1063/1.345440.
- [12] MROZEK P., Numerical and experimental investigation on Ag+–Na+ field assisted ion-exchanged channel waveguides, Applied Optics 51(20), 2012, pp. 4574–4581, DOI:10.1364/AO.51.004574.
- [13] MROZEK P., Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup, Applied Optics 50(22), 2011, pp. 4499–4508, DOI:10.1364/AO.50.004499.
- [14] MROZEK P., MROZEK E., LUKASZEWICZ T., Side diffusion modeling by the explicit consideration of a space-charge buildup under the mask during strip waveguide formation in the Ag+–Na+ field-assisted ion-exchange process, Applied Optics 45(4), 2006, pp. 619–625, DOI:10.1364/AO.45.000619.
- [15] KNOWLES K.M., VAN HELVOORT A.T.J., Anodic bonding, International Materials Reviews 51(5), 2006, pp. 273–311, DOI:10.1179/174328006X102501.
- [16] KRIEGER U.K., LANFORD W.A., Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental, Journal of Non-Crystalline Solids 102(1–3), 1988, pp. 50–61, DOI:10.1016/0022-3093(88)90112-3.
- [17] LEPIENSKI C.M., GIACOMETTI J.A., LEAL FERREIRA G.F., FREIRE JR. F.L., ACHETE C.A., Electric field distribution and near-surface modifications in soda-lime glass submitted to a DC potential, Journal of Non-Crystalline Solids 159(3), 1993, pp. 204–212, DOI:10.1016/0022-3093(93)90224-L.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1fe9bb2-44b4-4227-87a4-8bfcc9ff0692