PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the convergence of domain decomposition algorithm for the body with thin inclusion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a coupled 3D model that involves computation of the stress-strain state for the body with thin inclusion. For the description of the stress-strain state of the main part, the linear elasticity theory is used. The inclusion is modelled using Timoshenko theory for shells. Therefore, the dimension of the problem inside the inclusion is decreased by one. For the numerical solution of this problem we propose an iterative domain decomposition algorithm (Dirichlet-Neumann scheme). This approach allows us to decouple problems in both parts and preserve the structure of the corresponding matrices. We investigate the convergence of the aforementioned algorithm and prove that the problem is well-posed.
Rocznik
Strony
27--32
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
  • Faculty of Applied Mathematics and Informatics, Department of Applied Mathematics, Ivan Franko Lviv National University, Universytetska,1, 79000, Lviv, Ukraine
autor
  • Faculty of Applied Mathematics and Informatics, Department of Applied Mathematics, Ivan Franko Lviv National University, Universytetska,1, 79000, Lviv, Ukraine
Bibliografia
  • 1. Dyyak I., Savula Ya., Styahar A. (2012), Numerical investigation of a plain strain state for a body with thin cover using domain decomposition, Journal of Numerical and Applied Mathematics, 3 (109), 23–33.
  • 2. Dyyak I., Savula Ya. (1997), D-Adaptive mathematical model of solid body with thin coating, Mathematical Studies, 7 (1), 103–109.
  • 3. Hsiao G.C., Wendland W.L. (2008), Boundary integral equations, Springer.
  • 4. Nazarov S. (2005), Asymptotic analysis and modeling of a jointing of a massive body with thin rods, Journal of Mathematical Sciences, 127 (5), 2192-2262.
  • 5. Niemi A.H., Babuska I., Pitkaranta J., Demkowicz L. (2010), Finite element analysis of the Girkmann problem using the modern hpversion and the classical h-version, ICES Report, 10-47.
  • 6. Pelekh B. (1978), Generalized shell theory, Lviv (in Russian).
  • 7. Quarteroni A., Valli. A. (1999), Domain decomposition methods for partial differential equations, Oxford.
  • 8. Savula Ya., Mang H., Dyyak I., Pauk N. (2000), Coupled boundary and finite element analysis of a special class of two-dimensional problems of the theory of elasticity, Computers and Structures, 75 (2), 157-165.
  • 9. Sulym H. (2007), Bases of mathematical theory of thermoelastic eqiulibrium of deformable solids with thin inclusions, Research and Publishing Center of Shevchenko Scientific Society, Lviv (in Ukrainian).
  • 10. Vynnytska L., Savula Ya. (2008), The stress-strain state of elastic body with thin inclusion, Ph.-Math. Modeling and Information Techonogies, 7, 21-29 (in Ukrainian).
  • 11. Vynnytska L., Savula Ya. (2012), Mathematical modeling and numerical analysis of elastic body with thin inclusion, Computational Mechanics, 50 (5), 533-542.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1fdbc25-8d9e-49e6-9d90-f631c48f2080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.