PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A time feld search method for AE source location with a regional velocity model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A time-feld search method was proposed for AE event source location, combining the grid search method and the database technique. Theoretical process was given, and laboratory hydraulic fracture stimulation experiments under true-triaxial confning stresses were performed to prove the practicability of the method. A regional velocity model with variable wave velocities and directionality was required to ft observations. The location results showed that time-feld location method obtains the global optimal source location solution with a relatively high efciency and accuracy.
Czasopismo
Rocznik
Strony
1335--1344
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Key Laboratory of Ministry of Education for Efcient Mining and Safety of Metal Mine, University of Science and Technology, Beijing 100083, China
autor
  • Key Laboratory of Ministry of Education for Efcient Mining and Safety of Metal Mine, University of Science and Technology, Beijing 100083, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • University of Wisconsin-Madison, Madison, WI, USA
  • Colorado School of Mines, Golden, CO 80401, USA
autor
  • School of Petroleum Engineering, China University of Petroleum (East China), Shandong, China
  • Key Laboratory of Ministry of Education for Efcient Mining and Safety of Metal Mine, University of Science and Technology, Beijing 100083, China
Bibliografia
  • 1. Chen DF, Xue JW, Zhang M (2005) Global optimization algorithm and its application. J Daqing Pet Inst 29(1):89–93. https://doi.org/10.3969/j.issn.2095-4107.2005.01.029
  • 2. Cheng YM, Li L, Chi SC, Wei WB (2007) Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput Geotech 34:92–103. https://doi.org/10.1016/j.compgeo.2006.10.012
  • 3. Dong LJ, Xi-Bing LI (2012) Three-dimensional analytical solution of acoustic emission or microseismic source location under cube monitoring network. Trans Nonferrous Met Soc China 22:3087–3094. https://doi.org/10.1016/s1003-6326(11)61575-6
  • 4. Dreger D, Uhrhammer R, Pasyanos M, Franck J, Romanowicz B (1998) Regional and far-regional earthquake locations and source parameters using sparse broadband networks: a test on the ridgecrest sequence. Bull Seismol Soc Am 88:1353–1362. https://doi.org/10.1016/S0040-1951(98)00192-9
  • 5. Frash LP, Gutierrez M, Hampton J (2014) True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs. Int J Rock Mech Min Sci 70:496–506. https://doi.org/10.1016/j.ijrmms.2014.05.017
  • 6. Ge M (2003) Analysis of source location algorithms: part II. Iterative methods. J Acoust Emiss 21:29–51
  • 7. Hampton J, Gutierrez M, Matzar L, Hu D, Frash L (2018) Acoustic emission characterization of microcracking in laboratory scale hydraulic fracturing tests. J Rock Mech Geotech Eng 10(5):805–817. https://doi.org/10.1016/j.jrmge.2018.03.007
  • 8. Hampton J, Gutierrez M, Matzar L, Hu D (2019) Microcrack damage observations near coalesced fractures using acoustic emission. Rock Mech Rock Eng 2019:1–12. https://doi.org/10.1007/s00603-019-01818-4
  • 9. ITASCA (2016) InSite Seismic Processor Technical Appendices to the Users Manual Version 3.9. 54
  • 10. Jian LI, Gao Y, Xie Y et al (2014) Improvement of microseism location based on simplex method without velocity measuring. Chinese J Rock Mech Eng 33:1336–1346. https://doi.org/10.13722/j.cnki.jrme.2014.07.005
  • 11. Lympertos E, Dermatas E (2004) Acoustic-emission source location using the lower-frequencies of flexural waves. In: Advances in scattering and biomedical engineering. World Scientific, Singapore, pp 346–354, https://doi.org/10.1142/9789812702593_0036.
  • 12. Pei J, Fei W, Liu J (2016) Spatial evolution and fractal characteristics of natural fractures in marbles under uniaxial compression loading based on the source location technology of acoustic emission. Environ Earth Sci 75:828. https://doi.org/10.1007/s12665-016-5649-7
  • 13. Pereyra V, Lee WK, Keller H (1980) Solving two-point seismic-ray tracing problems in a heterogeneous medium: part 1. A general adaptive finite difference method. Bull Seismol Soc Am 70:79–99
  • 14. Prugger AF, Gendzwill DJ (1998) Microearthquake location: a nonlinear approach that makes use of a simplex stepping procedure. Bull Seismol Soc Am 78:375–377
  • 15. Rabinowitz N (1988) Microearthquake location by means of nonlinear simplex procedure. Bull Seismol Soc Am 78:380–384
  • 16. Sambridge MS, Kennett BLN (1986) A novel method of hypocentre location. Geophys J Int 87:679–697. https://doi.org/10.1111/j.1365-246x.1986.tb06644.x
  • 17. Thurber CH (1985) Nonlinear earthquake location: theory and examples. Bull Seismol Soc Am. 75:779–790
  • 18. Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972–986
  • 19. Wang H, Ge M (2008) Acoustic emission/microseismic source location analysis for a limestone mine exhibiting high horizontal stresses. Int J Rock Mech Min Sci 45:720–728. https://doi.org/10.1016/j.ijrmms.2007.08.009
  • 20. Yue T, Xiao-Fei C (2005) A rapid and accurate two-point ray tracing method in horizontally layered velocity model. Acta Seismol Sin 18:154–161. https://doi.org/10.1007/s11589-005-0062-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1fa4e86-490e-4285-a3eb-1f61354a1c29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.