PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determination of optimised pick-up and drop-off locations in transport routing - a cost distance approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the emergence of dynamic passenger transport systems, such as demand-responsive transport (DRT) and ride-sharing without predetermined stop locations as used for static bus routes, accurate routing for these flexible door-to-door transport services is needed. Routing between two addresses requires the assignment of addresses to suitable, so-called snapping points as reference points on the road network. Therefore, many conventional routing machines use perpendicular distance to identify the nearest point on the road network. However, this technique tends to produce inaccurate results if the access to a building is not reachable from the road segment with the shortest perpendicular distance. We provide a novel approach to identify the access to buildings (paths) based on remote sensing data to obtain more reasonable stop locations for passenger transport. Multispectral images, OpenStreetMap data, and light detection and ranging (LiDAR) data were used to perform a cost distance analysis based on vegetation cover, building footprints, and the slope of the terrain to identify such optimised stop locations. We assumed that the access to buildings on the shortest route to the building’s entrance consists of little vegetation cover and minimal slope of the terrain; furthermore, the calculated path should not cross building footprints. Thus, snapping points on the road network can be determined based on the most likely path between a building and the road network. We validated our results based on a predetermined ideal snapping area considering different weightings for the parameters slope, vegetation, and building footprints. The results were compared with a conventional routing machine that uses perpendicular distance. This routing machine shows a validation rate of 81.4%, whereas the validation rate of our presented approach is as high as 90.3%. This new approach provides increased accuracy and better comfort for flexible passenger transport systems.
Czasopismo
Rocznik
Strony
17--28
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Max-Planck-Institute for Dynamics and Self-Organization; Am Fassberg 17, 37077 Göttingen, Germany
  • Max-Planck-Institute for Dynamics and Self-Organization; Am Fassberg 17, 37077 Göttingen, Germany
  • Max-Planck-Institute for Dynamics and Self-Organization; Am Fassberg 17, 37077 Göttingen, Germany
Bibliografia
  • 1. Pereira, F.C. & Costa, H. & Pereira, N.M. An off-line map-matching algorithm for incomplete map databases. European Transport Research Review. 2009. Vol. 1. P. 107-124.
  • 2. Hashemi, M. & Karimi, H.A. A critical review of real-time map-matching algorithms: Current issues and future directions. Computers, Environment and Urban Systems. 2014. Vol. 48. P. 153-165. Elsevier BV.
  • 3. He, M. & et al. An enhanced weight-based real-time map matching algorithm for complex urban networks. Physica A: Statistical Mechanics and its Applications. 2019. Vol. 534. Elsevier BV.
  • 4. Knapen, L. & et al. Likelihood-based offline map matching of GPS recordings using global trace information. Transportation Research Part C: Emerging Technologies. 2018. Vol. 93. P. 13-35.
  • 5. Quddus, M.A. & Ochieng, W.Y. & Noland, R.B. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies. 2007. Vol. 15. P. 312-328.
  • 6. Zhang, D. & Dong, Y. & Guo, Z. A turning point-based offline map matching algorithm for urban road networks. Information Sciences. 2021. Vol. 565. P. 32-45.
  • 7. Huabei, Y. & Wolfson, O. A weight-based map matching method in moving objects databases. 2004. In: Proceedings. 16th International Conference on Scientific and Statistical Database Management. 2004. P. 437-438.
  • 8. Google Maps. Offline Map Matching. Available at: https://developers.google.com/maps/documentation/roads/snap. 2021.
  • 9. Open Source Routing Machine. Nearest Service. Available at: http://project-osrm.org/docs/v5.5.1/api/#services 2021.
  • 10. Google Maps. Query Am Fassberg 17, Goettingen, Germany. Available at: https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893 2021.
  • 11. Google Maps. Query Friedenstrasse 29A, Hoexter, Germany. Available at: https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893 2021.
  • 12. Smith, M.J. & Goodchild, M.F. & Longley, P. Geospatial Analysis. 2018. Winchelsea Press. ISBN: 9781912556038.
  • 13. Warntz, W. Transportation, social physics, and the law of refraction. The Professional Geographer. 2005. Vol. 9. P. 2-7.
  • 14. Yu, C. & Lee, J. & Mandy, J. Extensions to least-cost path algorithms for roadway planning. International Journal of Geographical Information Science. 2003. Vol. 17. P. 361-376. Taylor & Francis.
  • 15. van Leusen, M. Pattern to process: methodological investigations into the formation and interpretation of spatial patterns in archaeological landscapes. 2002. Rijksuniversiteit Groningen.
  • 16. Rees, G. Least-cost paths in mountainous terrain. Computers & Geosciences. 2004. Vol. 30. P. 203-209.
  • 17. Douglas, D. Least-cost path in GIS using an accumulated cost surface and slopelines. University of Toronto Press Inc. (UTPress). Cartographica: The International Journal for Geographic Information and Geovisualization. 1994. Vol. 31. P. 37-51.
  • 18. Collischonn, W. & Pilar, J. A direction dependent least-cost-path algorithm for roads and canals. International Journal of Geographical Information Science. 2000. Vol. 14. P. 397-406.
  • 19. Cormen, T. H. & et al. Introduction to Algorithms. MIT Press. 2001.
  • 20. Xu, J. & Lathrop, R.G. Improving cost-path tracing in a raster data format. Computers & Geosciences. 1994. Vol. 20. P. 1455-1465. ISSN: 0098-3004.
  • 21. Open Source Routing Machine. Routing Engine. Available at: http://project-osrm.org/ 2021.
  • 22. Landesdatenbank-NRW. Die Landesdatenbank NRW. Available at: https://www.landesdatenbank.nrw.de/ldbnrw/online/dat 2018.
  • 23. OpenStreetMap contributors. Available at: https://planet.osm.org. https://www.openstreetmap.org/ 2017.
  • 24. Information und Technik - Nordrhein-Westfalen. OpenGeoData. Available at: https://www.opengeodata.nrw.de/produkte/ 2017.
  • 25. Huijsmans, D.P. & Vossepoel, A.M. Informatie in Gedigitaliseerde Beelden. Volume One: Introduction. 1989.
  • 26. Oppenheim, A.V. & et al. Signals & Systems. Prentice Hall. 1983. ISBN: 9780138147570LCCN: 96019945.
  • 27. Liu, Y. & Monteiro, S. & Saber, E. Vehicle detection from aerial color imagery and airborne LiDAR data. 2016. IGARSS. P. 1384-1387.
  • 28. Yang, B. & Sharma, P. & Nevatia, R. Vehicle detection from low quality aerial LIDAR data. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV). 2011. P. 541-548.
  • 29. Xu, J. & Lathrop, R.G. Improving simulation accuracy of spread phenomena in a raster-based Geographic Information System. International Journal of Geographical Information Systems. 1995. Vol. 9. No. 2. P. 153-168.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1e3824d-a5f1-4486-ba4a-2482097b01f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.